
SETL for Internet Data Processing

by

David Bacon

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Computer Science

New York University

January, 2000

Jacob T. Schwartz (Dissertation Advisor)



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JAN 2000 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2000 to 00-00-2000  

4. TITLE AND SUBTITLE 
SETL for Internet Data Processing 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
New York University,70 Washington Sq South,New York City,NY,10012 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

434 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



cDavid Bacon, 1999

Permission to reproduce this work in whole or in part for non-commercial purposes is
hereby granted, provided that this notice and the reference

http://www.cs.nyu.edu/bacon/phd-thesis/

remain prominently attached to the copied text. Excerpts less than one PostScript page
long may be quoted without the requirement to include this notice, but must attach a
bibliographic citation that mentions the author’s name, the title and year of this disser-
tation, and New York University.



For my children

ii



Acknowledgments

First of all, I would like to thank my advisor, Jack Schwartz, for his support and encour-

agement. I am also grateful to Ed Schonberg and Robert Dewar for many interesting

and helpful discussions, particularly during my early days at NYU. Terry Boult (of

Lehigh University) and Richard Wallace have contributed materially to my later work

on SETL through grants from the NSF and from ARPA. Finally, I am indebted to my

parents, who gave me the strength and will to bring this labor of love to what I hope

will be a propitious beginning.

iii



Preface

Colin Broughton, a colleague in Edmonton, Canada, first made me aware of SETL in

1980, when he saw the heavy use I was making of associative tables in SPITBOL for

data processing in a protein X-ray crystallography laboratory.

Accordingly, he loaned me B.J. Mailloux’s copy ofA SETLB Primerby Henry

Mullish and Max Goldstein (1973). I must have spoken often of this language, because

when another colleague, Mark Israel, visited the University of British Columbia two or

three years later, and came across a tutorial entitledThe SETL Programming Language

by Rober Dewar (1979), he photocopied it in its entirety for me.

The syntactic treatment of maps in SETL places its expressive balance closer to al-

gebraic mathematics than is customary for programming languages, and I immediately

started finding SETL helpful as a notation for planning out the more difficult parts of

programs destined to be coded in SPITBOL, Algol 68, Fortran, or Assembler/360.

When I took my M. Sc. in 1984–5, my enthusiasm about SETL was such that I made

a presentation about it to my Advanced Programming Languages class. Later, when I

was invited to stay on for my Ph.D. at the University of Toronto, the reason I declined

to do so was specifically because no one there was willing to supervise work on SETL,

and I for my part did not want to get caught up in either the logic programming or the

iv



(really very good) systems programming tradition prevailing there at that time.

So it was that in 1987, not having access to any good SETL implementation (the

CIMS version seemed to crash on the first garbage collection attempt on the main-

frame I was using), I decided to dash one off in SPITBOL. It was a good learning exer-

cise. The compiler seemed to work correctly to the extent it was tested, and produced

runnable SPITBOL code, but never saw much practical application on the hardware of

the day.

In December of 1988, I decided to write a production-grade SETL compiler in C,

and thus began an implementation that I use to this day and continue to extend. From

the start, I found maps useful in the combinatorial programming I was doing in molec-

ular modeling. The implementation is packaged in such a way that its most common

invocation mode (“compile and go”) is via the shell-level commandsetl, making SETL

programs easy to fit into Unix filter pipelines, just like other scripts or pre-compiled

programs.

Reasonably convenient though it was to be able to set up arrangements of commu-

nicating SETL programs in this way, the languages such as the Bourne and C shell used

for interconnecting the various programs were still nothing more than thin descendants

of the job control languages of yore. Since SETL was already so competent at handling

data, it was only natural to extend it with facilities for process creation and communica-

tion. This led to the one-shotfilter, unidirectionalpipe, and bidirectionalpumpmodels

for communication described in Chapter 2 of this dissertation.

The fact that awritea to a reader’sreada can as easily transfer a large map as a

small integer, combined with the fact that the Unix commandrsh can be used to launch

v



tasks on remote processors and communicate with them, made this a very comfortable

programming environment for distributed programming, though not able to express a

TCP/IP (TCP or UDP) server or client directly.

In 1994, the World Wide Web “arrived”, and it became clear that TCP/IP was to

become firmly established as a global standard—the MIME-conveying HTTP protocol

rides upon TCP streams, and the namespace-structuring Universal Resource Locator

(URL) convention uses host names that map to IP addresses through the auspices of

the widely used Domain Name Service (DNS). I therefore decided to build support for

TCP/IP directly into the SETL I/O system, such that opening and using a bidirectional

TCP communications stream in SETL would be as easy and natural as opening and

using a file. How this is done is detailed in Chapter 3, which also describes SETL’s

programmer-friendly support for UDP datagrams.

The ability to code servers in SETL has proven to be even more useful than I pre-

dicted. Servers act as the primary objects in server hierarchies. They bear state and

control access to that state through message-passing protocols with child processes

which in turn deal with clients. A server tends to keep track of such children with a

dynamically varying map. Between the server and these trusted, proximal children,

communication is safe and quick, minimizing the risk of the server becoming a bottle-

neck. The WEBeye study of Chapter 4 illustrates this pattern.

The liberal use of processes turns out to be beneficial time and again. Real work

tends to fall to simple modules which communicate in a primitive way through their

standard input and output channels, and these modules can easily be written in more

efficiency-oriented languages than SETL where necessary. Small components are also

vi



easy to isolate for special or unusual testing, or for those rare but inevitable episodes

called debugging.

Overall, systems designed as process-intensive server hierarchies tend to acquire a

satisfying dataflow feel. Not only is this in the spirit of Unix filters, it also dovetails

with SETL’s value semantics, which abhor a pointer and cherish a copy, and in so doing

avoid the hazard of distributed dangling references.

vii



Contents

Dedication ii

Acknowledgments iii

Preface iv

1 Introduction 1

1.1 Why SETL? . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A Brief History of SETL . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Environmentally Friendly I/O 24

2.1 Invocation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Filters, Pipes, and Pumps . . . . . .. . . . . . . . . . . . . . . . . . . 27

2.2.1 Filters .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Pipes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Pumps .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.4 Buffering . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.5 Line-Pumps . .. . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Sequential and Direct-Access I/O . .. . . . . . . . . . . . . . . . . . . 37

2.3.1 Sequential Reading and Writing . . . . .. . . . . . . . . . . . 38

2.3.2 String I/O . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3 Direct-Access Files . . . . .. . . . . . . . . . . . . . . . . . . 41

viii



2.4 Signals and Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.2 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Multiplexing withSelect . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Files, Links, and Directories . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 User and Group Identities . . . . . .. . . . . . . . . . . . . . . . . . . 51

2.8 Processes and Process Groups . . .. . . . . . . . . . . . . . . . . . . 54

2.9 OpenCompatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.10 Automatically Opened Files . . . .. . . . . . . . . . . . . . . . . . . 57

2.11 Opening Streams Over File Descriptors . . . . .. . . . . . . . . . . . 57

2.12 Passing File Descriptors . . . . . .. . . . . . . . . . . . . . . . . . . 58

2.13 Normal and Abnormal Endings . . .. . . . . . . . . . . . . . . . . . . 60

2.14 Strings . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.14.1 Matching by Regular Expression . . . . .. . . . . . . . . . . . 63

2.14.2 Formatting and Extracting Values . . . .. . . . . . . . . . . . 66

2.14.3 Printable Strings . . . . . .. . . . . . . . . . . . . . . . . . . 70

2.14.4 Case Conversions and Character Encodings . . . . . .. . . . . 72

2.14.5 Concatenation and a Note on Defaults . .. . . . . . . . . . . . 74

2.15 Field Selection Syntax for Maps . .. . . . . . . . . . . . . . . . . . . 75

2.16 Time . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.17 Low-Level System Interface . . . .. . . . . . . . . . . . . . . . . . . 78

2.17.1 I/O and File Descriptors . .. . . . . . . . . . . . . . . . . . . 78

2.17.2 Processes . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.18 Summary . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 Internet Sockets 84

3.1 Clients and Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.1.1 A Client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.1.2 A Server . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1.3 Choosing the Port Number .. . . . . . . . . . . . . . . . . . . 90

ix



3.2 Concurrent Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2.1 Na¨ıve Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2.2 Shell-Aided Server . . . . .. . . . . . . . . . . . . . . . . . . 95

3.2.3 Shell-Independent Server . .. . . . . . . . . . . . . . . . . . . 97

3.2.4 Pump-Aided Server . . . . .. . . . . . . . . . . . . . . . . . . 98

3.3 Defensive Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.1 Time-Monitoring Server . .. . . . . . . . . . . . . . . . . . . 101

3.3.2 Identity-Sensitive Server . .. . . . . . . . . . . . . . . . . . . 104

3.4 UDP Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 WEBeye: A Case Study 113

4.1 What WEBeye Is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.1 Video Services. . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1.2 Camera Control Services . .. . . . . . . . . . . . . . . . . . . 118

4.1.3 Administrative Services . .. . . . . . . . . . . . . . . . . . . 124

4.2 Software Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2.1 Video Services. . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.2 Camera Control Services . .. . . . . . . . . . . . . . . . . . . 133

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5 On Data Processing 138

5.1 The Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3.1 On Checking .. . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3.2 On Limits . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3.3 On the Unexpected . . . . .. . . . . . . . . . . . . . . . . . . 148

5.3.4 On Clients . .. . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3.5 On Aliases . .. . . . . . . . . . . . . . . . . . . . . . . . . . 156

x



5.3.6 On Accessibility . . . . . .. . . . . . . . . . . . . . . . . . . 158

5.3.7 On Program Size . . . . . .. . . . . . . . . . . . . . . . . . . 159

5.3.8 On Standards .. . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6 Conclusions 168

6.1 Other Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.2 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.4 String Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.5 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.6 Miscellaneous Desiderata . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.6.1 Lexical Nesting. . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.6.2 Filename Globbing . . . . .. . . . . . . . . . . . . . . . . . . 190

6.6.3 Format-Directed I/O . . . .. . . . . . . . . . . . . . . . . . . 191

6.6.4 High-Level Internet Protocols . . . . . .. . . . . . . . . . . . 193

6.7 Beyond the Fringe . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.7.1 Pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.7.2 Closures and Continuations. . . . . . . . . . . . . . . . . . . 195

6.7.3 Threads and Fine-Grained Concurrency .. . . . . . . . . . . . 196

6.8 SETL Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.9 Comparison with Other Languages .. . . . . . . . . . . . . . . . . . . 202

6.9.1 Perl . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.9.2 Icon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.9.3 Functional Languages . . .. . . . . . . . . . . . . . . . . . . 208

6.9.4 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.9.5 Rexx .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.9.6 Java . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.10 Summary . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xi



A WEBeye Source Code 216

A.1 vc-admin.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A.2 vc-allowed.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A.3 vc-autoinit.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.4 vc-camera.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

A.5 vc-check.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A.6 vc-clear.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A.7 vc-comdev.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

A.8 vc-comport.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.9 vc-cron.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

A.10 vc-decode.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A.11 vc-do.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A.12 vc-event.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

A.13 vc-evjump.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

A.14 vc-evzoom.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

A.15 vc-exit.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

A.16 vc-getname.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

A.17 vc-giver.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

A.18 vc-go.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

A.19 vc-httpd.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

A.20 vc-image.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

A.21 vc-init.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

A.22 vc-input.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

A.23 vc-javent.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

A.24 vc-jmaster.cgi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

A.25 vc-jumper.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

A.26 vc-master.cgi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

A.27 vc-model.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

A.28 vc-mouse.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

A.29 vc-mover.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

xii



A.30 vc-msg.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

A.31 vc-obtain.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

A.32 vc-provide.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

A.33 vc-ptz.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

A.34 vc-push.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

A.35 vc-quit.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

A.36 vc-recv.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

A.37 vc-restart.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

A.38 vc-send.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

A.39 vc-seq.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

A.40 vc-simpler.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

A.41 vc-snap.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

A.42 vc-toplev.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

A.43 vc-zoomer.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

A.44 webutil.setl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Bibliography 398

xiii



Chapter 1

Introduction

Public network services have to be coherent, reliable, and responsive in the face of

errors, failures, attacks, and intermittent resource scarcity. SETL [181] turns out to be

a convenient and powerful tool for dealing with this challenging environment. This

dissertation describes extensions to SETL that are useful in data processing, especially

when the Internet and numerous processes are involved. It is intended to serve as

a tutorial on the design of moderately complex distributed systems using SETL, and

accordingly provides many examples.

1.1 Why SETL?

First of all, SETL strives to put the needs of the programmer ahead of those of the

machine, as is reflected in the automatic memory management, in the fact that flexible

1



Introduction 1.1 Why SETL?

structures can be employed as easily as size-constrained ones can, and in the presence

of an interface to powerful built-in datatypes through a concise and natural syntax.

This high-level nature makes SETL a pleasure to use, and has long been appreciated

outside the world of distributed data processing. Flexibility does not itself ensure good

discipline, but is highly desirable for rapid prototyping. This fills an important need,

because experimentation is a crucial early phase in the evolution of most large software

systems, especially those featuring novel designs [135, 173, 66, 70, 71].

Second, SETL’s strong bias in favor of “value semantics” facilitates the distribution

of work and responsibility over multiple processes in the client-server setting. The

absence of pointers eliminates a major nuisance in distributed systems design, namely

the question of how to copy data structures which contain pointers. SETL realizes

Hoare’s ideal of programming without pointers [114].

Third, the fact that every SETL object, except for atoms and procedure values, can

be converted to a string and back (with some slight loss of precision in the case of

floating-point values), and indeed will be so converted when a sender’swritea call is

matched by a receiver’sreada, means that SETL programs are little inconvenienced

by process boundaries, while they enjoy the mutual protections attending private mem-

ories. Maps and tuples can represent all kinds of data structures in an immediate if

undisciplined way, and the syntactic extension presented in Section 2.15, which al-

lows record-style field selection on suitably domain-restricted maps to be made with a

familiar dot notation, further abets the direct use of maps as objects in programs, com-

plementing the ease with which they can be transmitted between programs. A similar

2



Introduction 1.1 Why SETL?

freedom of notation exists in JavaScript, where associative arrays are identified with

“properties” [152].

Fourth, strings themselves are first-class objects in SETL. They are completely flex-

ible, such that assigning to a substring can change the length of the hosting string, just

as a tuple can change length through subtuple assignment. Strings have a rich set of

built-in operations for searching and manipulation based on algebraically formulated

patterns. Further extensions to allow selections and substitutions to be specified by

regular expressions in slicing notations and other forms are described in Section 2.14.

Because strings are at the heart of data processing, it is vital to support them well, and

SETL does.

Fifth, SETL’s skill with general finite maps has welcome consequences for the data

processing practitioner. At an abstract level, a data processing system can be viewed

as a dynamic graph along whose arcs messages pass. The Khoros [134] system makes

this abstract view concrete in its visual programming language, Cantata. The data

in messages undergoes transformation and recombination in processing nodes, where

maps represent data relationships directly. Processes of extraction tend to gather data

around keys (often strings) that identify categories. Processes of association discovery

correspond to set intersection, and merging is closely related to set union. The sets

themselves are most often domains or ranges of maps, or sometimes projections of sets

of more general tuples. Maps are so very much at the heart of SETL style that Dewar,

in his 1979 bookThe SETL Programming Language[53], wrote:

3



Introduction 1.1 Why SETL?

The general rule in SETL is to use maps wherever possible. This may

take some practice, especially if you are used to programming in some

other language, but remember this simple principle: find the maps, they

are always there!

This is a principle that works well in practice. For example, if a processP has to mul-

tiplex input streams from several other processes, a mapM over the corresponding I/O

handles inP will often be used to trackP’s state of knowledge about those processes,

and the domain ofM will be in the set of input handles that is passed to theselect

primitive (see Section 2.5) whenP waits nondeterministically for I/O events.

Sixth, the absence of restrictions that are unhelpful to programmers brings with it

a substantial measure of orthogonality and robustness. Orthogonality promotes the use

of feature combinations that make sense, which is conducive to directness of expres-

sion. The absence of size restrictions similarly helps to eliminate clutter. For example,

when programmers do not have to write extra code to deal with the fact that messages

embedded in a TCP stream can be of arbitrary length, the most general case is han-

dled gracefully and effortlessly. The importance of this for publicly exposed network

servers cannot be overemphasized. If the only thing the most assiduous attack can do

is bring down a subprocessSdue to overall exhaustion of resources that are allocated

to S, andS is the hostile client’s only interface to the public service, then the damage is

easily isolated. It does not even need to be damageper se, but can be naturally handled

like an ordinary transaction that aborts when it cannot commit.

4



Introduction 1.1 Why SETL?

The remarkable adaptability of SETL and its gift for concise expression over a wide

range of programming problems stem from its close connection to the foundations of

mathematics. Set formers, modeled after set comprehensions, are a splendid case in

point. They are highly accessible little pictures which encourage the programmer to

take a dual view of sets as entities that can be characterized by predicates or constructed

from parts. Tuple displays also exemplify SETL’s directness of expression. In “fetch”

contexts, they are enumerative denotations much like the written form of LISP lists, and

in “store” positions, they show immediately the pattern of a required structure. Finally,

SETL has freely borrowed the best ideas of other programming languages, such as the

Algol family, APL [120, 169], and SNOBOL [99], as well as adding a few of its own.

The main significance of all the foregoing attributes of SETL for data processing

over the Internet is that they pave the way for small programs. A small SETL program

can do a lot, is not constrained by the usual obstacles to the communication of complex

or pointer-bearing objects between processes, and is a well isolated module. Shared

variables, the plague of concurrent programs, are simply not in the language, and are

rarely missed: sharing resources is a serious matter that usually calls for a management

mechanism that is best encapsulated in a module anyway. Namespace is adequately

structured by a file system or URL-like convention for most purposes, but access to the

objects in that space is best mediated by an appropriately synchronizing small process.

This raises the important issue of the data processing environment—an insular lan-

guage may be admired, but it cannot scream. I have been fortunate in choosing to adopt

the Posix [118, 119, 117] standards as a design benchmark for the SETL interface to

5



Introduction 1.2 A Brief History of SETL

files, commands, users, processes, and network communication. This operating system

model has gained wide acceptance by vendors in the 1990s, and is now embodied in

the X/Open specification commonly known as Unix 98 [154]. Chapters 2 and 3 are

largely devoted to a presentation of those features in my current definition of SETL

that employ and build upon this model.

1.2 A Brief History of SETL

SETL today is essentially the same language Jack Schwartz introduced 30 years ago in

Set Theory as a Language for Program Specification and Programming[175]:

It may be remarked in favor of SETL that the mathematical experience

of the past half-century, and especially that gathered by mathematical lo-

gicians pursuing foundational studies, reveals the theory of sets to incor-

porate a very powerful language in terms of which the whole structure of

mathematics can rapidly be built up from elementary foundations. By ap-

plying SETL to the specification of a number of fairly complex algorithms

taken from various parts of compiler theory, we shall see that it inherits

these same advantages from the general set theory upon which it is mod-

eled. It may also be noted that, perhaps partly because of its classical fa-

miliarity, the mathematical set-notion provides a comfortable framework,

that is, requiring the imposition of relatively few artificial constructions

upon the basic skeleton of an analysis. We shall see that SETL inherits this

6



Introduction 1.2 A Brief History of SETL

advantage also, so that it will allow us to describe algorithms precisely but

with relatively few of those superimposed conventions which make pro-

grams artificial, lengthy, and hard to read.

The contrast between the expressive efficiency of mathematics and the obsessive

parsimony of machine-oriented languages was highlighted inOn Programming[177,

p. vii]:

On the one hand, programming is concerned with the specification of al-

gorithmic processes in a form ultimately machinable. On the other, math-

ematics describes some of these same processes, or in some cases merely

their results, almost always in a much more succinct form, yet in a form

whose precision all will admit. Comparing the two, one gets a very strong

even if initially confused impression that programming is somehow more

difficult than it should be. Why is this? That is, why must there be so

large a gap between a logically precise specification of an object to be

constructed and a programming language account of a method for its con-

struction? The core of the answer may be given in a single word: effi-

ciency. However, as we shall see, we will want to take this word in a rather

different sense than that which ordinarily preoccupies programmers.

More specifically, the implicit dictions used in the language of mathe-

matics, which dictions give this language much of its power, often imply

searches over infinite or at any rate very large sets. Programming algo-

7



Introduction 1.2 A Brief History of SETL

rithms realizing these same constructions must of necessity be equivalent

procedures devised so as to cut down on the ranges that will be searched to

find the objects one is looking for. In this sense, one may say thatprogram-

ming is optimizationand that mathematics is what programming becomes

when we forget optimization andprogram in the manner appropriate for

an infinitely fast machine with infinite amounts of memory. At the most

fundamental level, it is the mass of optimizations with which it is burdened

that makes programming so cumbersome a process, and it is the sluggish-

ness of this process that is the principal obstacle to the development of the

computer art.

This perspective, as hinted in the first quotation above, sprang from the strong per-

ception in the late 1960s that there was a need for a set-oriented language capable of

expressing concisely the kind of set-intensive algorithm that kept arising in studies of

compiler optimization, such as those by Allen, Cocke, Kennedy, and Schwartz [5, 43,

6, 41, 7, 10, 130, 11, 8, 9, 131, 178, 179, 180, 12, 132, 42].Programming Languages

and their Compilers[44], published early in 1970, devoted more than 200 pages to

optimization algorithms. It included many of the now familiar techniques such as

redundant code elimination and strength reduction, dealt extensively with graphs of

control flow and their partitioning into “intervals”, and showed how to split nodes in

an irreducible flow graph to obtain a reducible one. Many workers in the 1970s and

80s besides those just mentioned identified SETL, directly or indirectly, as a language

8



Introduction 1.2 A Brief History of SETL

whose implementation was greatly in need of solutions to difficult compiler optimiza-

tion problems [80, 84, 85, 143, 82, 86, 123, 83, 148, 149, 174, 208, 3, 209]. SETL,

while still far from the celestial sphere of pure mathematics, was nonetheless seen as

occupying a very high orbit relative to other languages. It was SETL’s distance from

pure machines that made optimizing its implementations so important and at the same

time so difficult.

The synergy between the study of code optimization and the high-level set language

used for expressing optimization algorithms led to the SETL compiler project [186,

177], which was itself an abundant source of optimization problems. The SETL project

produced, among other things, the SETL optimizer [178, 88, 77], a 24,000-line proto-

type written in SETL. Unfortunately, on the machines of the day, it was too large to

apply to itself. This was a pity because not only is SETL a language which could

benefit greatly from a good optimizer, it is also one whose semantic simplicity makes

it particularly amenable to the flow-tracing techniques of machine-independent code

optimization. The absence of pointers alone circumvents the issue of aliasing, a huge

advantage in this kind of analysis.

The sort of data flow (definition-use) information obtainable from analysis of con-

trol flow graphs, and more generally from Schwartz’s “value flow” tracing [177, 178,

144] that could follow objects when they were stored in aggregates and later extracted,

was useful in all sorts of ways. It sustained copy optimization [175, 178, 179], where

the redundant copying of an object could be suppressed when the only subsequent use

of the object also modified it, perhaps incrementally. Value flow analysis provided a

9



Introduction 1.2 A Brief History of SETL

dependency framework wherein the types of many variables and expressions could be

deduced by a transitive closure process starting from the manifest types of literals and

other forms [196]. This typefinding process in turn enabled the discovery of relation-

ships of set membership and inclusion [180], which was itself a prelude to automatic

data structure choice, because the way an object is used has a profound influence on

how it should be implemented. Weiss and Schonberg [208, 209] later showed how to

do type inference even in the presence of infinite sets of possible types arising from

actions such as “x := fxg”.

Data structure representations had their own sublanguage, the DSRL, which served

to annotate, but not otherwise modify, SETL programs coded at an appropriately ab-

stract level. The DSRL was designed to permit a smooth transition from Schwartz’s

two-level programming regime, in which programmers supplied representational de-

tails, to a more fully developed system in which a sophisticated optimizer made the

selections [175, 56, 174, 88, 77]. An important concept in the DSRL was that ofbase

sets, which were implicitly defined objects that could in principle allow much repre-

sentational sharing among the objects conceived by the programmer.

Value flow analysis, type inference, copy optimization, and deeper determinations

of relationships such as set membership or inclusion between variables preparatory

to automatic data structure selection all embody an approach to program analysis de-

scribed by Sintzoff [189] and calledabstract interpretationby Cousot and Cousot [47]

or symbolic executionin Muchnick and Jones [149, p. xv]. The essence of this model

is that any programP with well-defined semantics can be projected onto a more ab-

10



Introduction 1.2 A Brief History of SETL

stract programA capturing salient properties of objects inP in a manner susceptible

of analysis. For example, the sign of a product can be deduced from the signs of its

multiplicands without knowing their specific values. Similarly, result types for known

operators can usually be gleaned at compile time from operand types regardless of the

actual run-time values of those operands. In abstract interpretation, the abstract pro-

gramA is exercised atP’s compile time to discover desired properties of objects in

P. The symbols inA combine and recombine according to an algebra appropriate for

their purpose. If that algebra has been designed with feasible goals in mind, the exer-

cise will converge. It is typical to ensure this termination by taking advantage of the

fact that any set generated by inductive definitions (such as data flow equations) can

be defined as the lattice-theoretic least fixed point of a monotone function. This often

allows global properties to be inferred from local ones by a straightforward process of

transitive closure.

The power and generality of abstract interpretation moved Paige and his colleagues

to undertake an ambitious study of programtransformations, which ultimately led to

the APTS project [33, 161, 126, 162]. The first of the main three transformations used

in APTS is dominated convergence[32] for computing fixed points of Tarski [195,

48] sequences (f i(1) : i = 0, 1, 2, . . . for deflationary, monotonef ) with reasonable

efficiency. The second isfinite differencing[157, 164, 158], which is a set-theoretic

analogue of strength reduction that allows some expensive set operations within loops

to be reduced to incremental updates by locating fixed points more quickly through

the construction and maintenance of program invariants. The third transformation is

11



Introduction 1.2 A Brief History of SETL

real-time simulation[159, 30, 160, 34, 166] of an associative memory on an ordinary

random-access memory (or with slight additional restrictions a mere pointer-access

memory), which effectively automates the tedious programming activity of choosing

efficient basings for sets.

Chung Yung has recently used finite differencing in a technique he callsdestruc-

tive effect analysis, which seeks to incrementalize the copying of aggregates, in his

purely functional programming language,EAS, a packaging of the typed�-calculus as

extended with homogeneous sets [210, 211, 212].

Transformational programming can be regarded as a formalization of Dijkstra’s

stepwise refinement[57, 58]. As Bloom and Paige [28] point out, the transformational

methodology is able to do much more than merely optimize code, or translate a SETL-

like language into a C-like one. By helping the algorithm designer reason about time

and space complexity in syntactic terms rather than only by means of low-level count-

ing arguments, this technology has actually played a significant role in the invention of

several new algorithms with greatly reduced asymptotic complexity compared to pre-

vious solutions [165, 163, 32, 31, 28, 34, 38, 93], while it has rendered the algorithms

themselves more perspicuous both to their inventors and to their students.

The next phase in the development of APTS will seek to improve both its reliability

and its performance. Currently, all program transformations in APTS are proved correct

(meaning-preserving) by hand, which is slow and error-prone. The hope is to integrate

a meta-level proof verifier along the lines of Etna [36], an outgrowth of Cantone, Ferro,

and Omodeo’s work on fast decision procedures for fragments of finite set theory [37].

12



Introduction 1.2 A Brief History of SETL

Alternatively, the model for an integrated verifier might be the SETL-like NAP [126]

system, itself implemented in the SETL derivative Cantor [127, 124]. Verification of

assertions in, say, Hoare logic [113] would increase confidence in automatically ap-

plied transformations. Davis and Schwartz [50] showed how mechanical verification

systems could extend themselves with new proof methods without violating soundness

or changing the set of statements that could be proved.

The main existing impediment to the speed of APTS is the fact that its database of

program property relationships, which is dynamically deduced using a static database

of inference rules, must be recomputed after each application of a program transfor-

mation. What is being sought is anincrementalrule database system that can be used

to regenerate the relationship records efficiently after each rewriting operation [161].

Ultimately, it should be possible to apply APTS to itself for further large gains in

speed [162], and to take advantage of the technique of partial evaluation [122] to realize

a production-grade transformational system.

Recently, Goyal and Paige [94] have revisited the copy optimization problem for

SETL and other high-level languages that exemplify Hoare’s ideal of a pointer-free

style of programming. By taking the well-known technique of dynamic reference

counting to achieve “lazy” copying, and combining that with static liveness determina-

tion based on Schwartz’s value flow analysis, they are able to optimize the placement

of copy operations and ofom assignments, the latter serving to decrement the reference

counts of objects known to have no subsequent uses. They also prove the correctness of

their alias propagation analysis and code transformations using formal semantics and

13



Introduction 1.2 A Brief History of SETL

abstract interpretation.

Goyal [91] has obtained a dramatic improvement in the algorithmic complexity of

computing intra-proceduralmay-aliasrelations, again using dominated convergence

and finite differencing. In his dissertation [92], he develops set-theoretic languages

which can express both abstract specifications and low-level implementations in a form

which uses a data structure selection method based on a novel type system to preserve

the computational transparencythat is necessary in order for statements about pro-

gram efficiency to be meaningful. This is a cornerstone of the general transformational

methodology.

There have been a number of implementations of SETL and SETL-like languages

over the years. The first was called SETLB [151] and was implemented using an ex-

tension of Harrison’s extensible LISP-like BALM language, BALMSETL [101, 187].

SETLB was succeeded by SETLA [176], was implemented in BALMSETL, and was

an almost strict subset of SETL.

The full SETL language itself was implemented in LITTLE [207], syntactically a

Fortran-like language supplemented with a notation for bit-field extraction. LITTLE

had only two built-in data types, fixed-length bit strings and floating-point numbers,

but was used to implement both the compiler and run-time system of the version of

SETL maintained and distributed by the Courant Institute of Mathematical Sciences

(CIMS) at New York University from the mid-1970s until the late 1980s.

The CIMS SETL system was quite slow and cumbersome, and LITTLE was not

widely ported, so in the late 1970s Nigel Chapman, who was then a graduate student

14



Introduction 1.2 A Brief History of SETL

at the University of Leeds, designed and implemented a system called Setl-s [39]. It

covers a substantial subset of SETL, leaving out only such ephemera as the macros,

backtracking, the data representation sublanguage, support for separate compilation,

and a few minor syntactic luxuries. The “-s” in the name can also stand for “small”, be-

cause Setl-s was a very compact system based on Dewar’s celebratedindirect threaded

code[55] technique, and was written in MINIMAL, the portable assembly language

in which the run-time system of MACRO SPITBOL [54] was implemented. Jay Van-

deKopple dropped the hyphen from Setl-s and worked on what was then called SETLS

in the 1990s [202] while at NYU on sabbatical from Marymount College. He maintains

the current version of the compiler and documentation [203].

The batch-oriented character of the full CIMS SETL implementation, its require-

ment for considerable computing resources, and to some extent its complexity and

slowness, led Ed Dubinsky, who in the early 1980s was using SETL informally for dis-

crete mathematics and abstract algebra courses at Clarkson University, to collaborate

with Gary Levin in the mid-1980s on the creation of a new, small, interactive system

close in syntax and spirit to SETL but without the overhead. Called ISETL [145], this

system has now been stable at version 3.0 for many years, is freely and publicly avail-

able, comprises little more than 20,000 lines of portable C code, runs quite responsively

on all common desktop computers, provides first-class functions (a feature Dubinsky

has long valued), and has strong ongoing pedagogical support through several text-

books, annual workshops, and the enthusiasm of a sizeable community of mathematics

teachers [22, 150, 78, 183, 23, 79, 76, 81].

15



Introduction 1.2 A Brief History of SETL

In the late 1980s at NYU, meanwhile, there was a project aimed at overhauling the

CIMS SETL language and implementation. The new version of the language was tenta-

tively named SETL2. Kirk Snyder, a graduate student at that time, became dissatisfied

with what appeared to be ceaseless discussion supported by little action, and covertly

designed and implemented his own system called SETL2 [190] in about a year. It sim-

plified and modified various aspects of SETL syntax and semantics while it removed

the usual apocrypha (macros, backtracking, the data representation sublanguage, and

SETL modules), and introduced Ada-based “packages” and a portable file format for

separate compilation on DOS, Macintosh, Unix, and other platforms. Snyder subse-

quently added lambda expressions (first-class functions with closures) and support for

object-oriented programming, including multiple inheritance [191], though these ex-

tensions were not entirely without semantic problems in the context of a nominally

value-oriented language. Recently, Toto Paxia has made improvements to the interop-

erability of SETL2 through his “native” package declarations [168] which allow more

direct calls out to routines written in C than were previously possible.

Perhaps the most famous of all SETL programs to date is Ada/Ed [2, 135, 173], the

first validated translator and executable semantic model for the language now known

as Ada 83 [198]. It established convincingly that SETL is well suited for the rapid

prototyping of complex systems of significant size, and that when care is taken in the

construction of such prototypes, they can serve as readable, definitive specifications to

inform and guide the building of production systems.

16



Introduction 1.2 A Brief History of SETL

SETL’s success as a prototyping tool spawned the Esprit SED (SETL Experimen-

tation and Demonstration) project [125] of the late 1980s, which was a sweeping effort

to create a SETL-based prototyping environment complete with highly sophisticated

language manipulation tools at the syntactic and semantic levels [73]. This included

a SETL-to-Ada translator [72, 69], an editor, a debugger, and a performance-profiling

monitor [29]. The latter was rendered particularly accommodating and non-invasive by

the use of coöperating processes sharing messages over TCP sockets. Abstract inter-

pretation was the operative model in both the ambitious Tenenbaum-based [196] type

inferencer and Paige’s more general RAPTS [158] transformational system (the prede-

cessor to APTS), which was used to prototype “meta-SETL” [4], an AST-traversing in-

terpreter. SED employed a rich set of language processing tools such as Typol [51, 52]

for type checking and other semantic analysis via pattern-directed inference (abstract

interpretation), and a Mentor-based [74] interface to the syntax-directed editing en-

vironment. Interoperability was addressed in the SETL-to-Ada translator and in the

performance monitor by means of ISLE (the Interface Specification Language and En-

vironment), which was important for the SED project’s demonstration of rapid proto-

typing in SETL in a cartography application containing a package of computational

geometry algorithms [27].

Jean-Pierre Keller, the leader of the SED project, went on to define a SETL de-

scendant which he called Cantor [127, 124]. Cantor is actually closer in syntax and

semantics to ISETL [145] than to SETL, and is implemented in ISETL. It has first-

class functions, some concurrency mechanisms, and a set of predefined objects for

17



Introduction 1.2 A Brief History of SETL

GUI construction.

Encouraged by SED’s contributions to the art of programming in the large and

by the project’s inchoate plans for persistence in SETL, but disappointed by SED’s

failure to arrive at a coherent product [70], Ernst-Erich Doberkat proposed integrat-

ing persistent backing stores calledP-filesand their requisite namespace support into

SETL/E [66, 61], a revision of SETL that was extended with a process creation operator

and renamed ProSet [71] to signify its role in prototyping. Doberkat’s interest in SETL

during the 1980s [59, 65, 63, 72, 68, 69] grew in the 1990s into a more general in-

terest in software engineering with set-oriented languages having intrinsic persistence

features [60, 64, 67, 70, 71, 62] that sought to spare the programmer the trouble of

coding data movement operations explicitly. Willi Hasselbring also showed how to

translate [103] a subset of SETL/E into Snyder’s SETL2. ProSet tuples are natural can-

didates for inter-process communication via Linda tuple spaces [90], so Hasselbring

has worked extensively throughout the 1990s on and with a methodology for prototyp-

ing concurrent applications using a hybrid system called ProSet-Linda [102, 104, 109,

105, 106, 107, 108, 111], and compared this approach to several others [110, 112].

An entirely different notion of persistence, pertaining not to a backing store but to

the ability of a data structure to retain its update history in a way which preserves the

time and space efficiency of access to current and past states [75], was used by Zhiqing

Liu to create a SETL run-time system and graphical debugging interface which allows

users to scroll backward and forward in a program execution history [138, 140, 139].

Liu has also tried to bring some of the convenience of SETL into the relatively low-level

18



Introduction 1.2 A Brief History of SETL

world of C++ with his LIBSETL [141] header files and run-time library.

Another relative of SETL is Slim [20], which its designer, Herman Venter, describes

as “more like a cousin to SETL than a child, since it shares a common heritage with

SETL, but was independently designed” [204]. It supports object-oriented program-

ming and allows optional type declarations. Both the language and its implementation

are relatively small but complete.

An experimental language which bears some kinship to SETL at the data structure

level is the functional language SequenceL [45, 46], formerly called BagL. Every data

item in SequenceL is a sequence—even single elements are viewed as one-element

sequences. This facilitates a highly orthogonal treatment of operations and particularly

distributivity, rather in the spirit of APL. SequenceL also has maps for use in associative

subscripting. This language provides few syntactic comforts, however, offering little

more than a few denotational forms and a prefix function application notation that is

used even for binary operators.

The Griffin [95] language which was designed at New York University in the early

1990s was intended to be a general-purpose successor to SETL. Its goals were very

lofty, and included what is surely the most comprehensive type and type inference sys-

tem ever proposed. Griffin was supposed to give the programmer complete freedom

of choice as to whether to code in a functional or an imperative style. It had language

constructs for database-style transactions, namespaces, and persistence. Real-time fa-

cilities, Ada interoperability, exceptions, and broad support for concurrency were also

built in at the language level. Much of Griffin has been implemented in a compiler,

19



Introduction 1.2 A Brief History of SETL

but a major obstacle to the completion of that enormous task has been the difficulty of

fixing on a fully self-consistent language definition.

My own interest in SETL in the 1980s, and my dissatisfaction with the CIMS im-

plementation and the terms under which it was marketed, led me in 1987 to prototype

a compiler and run-time interpreter for SETL in SPITBOL [54]. Although this version

was a reasonably complete realization of the core SETL language as described by De-

war [53], and appeared to function correctly in the limited tests to which it was put, it

was entirely unsatisfactory in terms of speed, and had size limitations on strings, tuples,

and sets imposed by their rather direct representation as SPITBOL strings, arrays, and

tables respectively.

So it was that in late 1988, newly deprived of SPITBOL in the transition from

a mainframe running MTS (the Michigan Terminal System [188]) to a workstation

running Unix, I found myself encouraged by the emergence of ISETL but unable to

adapt it easily to non-interactive data processing purposes. I thus began a part-time

effort to implement a compiler and run-time system for SETL in C. This version was

complete enough for daily use by mid-1990, and, though it is now rather like the car

in which almost every part has been replaced, it is still my main vehicle for running

SETL programs. It is also the one which supports the language extensions and code

samples presented in this dissertation. Although I set much greater store by robustness

and correctness than by speed in this implementation, its efficiency has almost always

been satisfactory. In the rare instances where this has not been the case, it has been

easy to make the SETL program interoperate with programs or subroutines written in

20



Introduction 1.2 A Brief History of SETL

lower-level languages, and in any case those situations usually seem to occur when

there is a library of C functions already involved. Elementary computation-intensive

image processing operations are a representative example.

Shortly before arriving at New York University in 1990, I became aware of Snyder’s

SETL2, which had just been unveiled that spring. In the fall of that year, there was

some talk of a unified language definition and implementation, but this was prevented

by the fact that Snyder did not want to permit access to his system’s source code, and

by the fact that we both considered SETL and SETL2 to be works in progress. There

were also some differences between the two languages, and they were very differently

packaged, reflecting their rather different goals. Since there was starting to emerge a

body of SETL2 code, including a revision of Ada/Ed [21], I elected to extend the SETL

grammar with as much of SETL2’s generally simpler syntax as it could accommodate.

It quickly became apparent that essentially nothing needed to be left out. The worst

collision was that some ambiguities in the syntax of loop headers were a little awkward

to resolve, but this only led to some minor patchwork in the compiler and scarcely

incommoded the SETL programmer. The resulting augmented SETL is a less than

ideal splice from the language design point of view, but perfectly comfortable from

the standpoint of writing code except where it gratuitously requires the programmer to

make occasional choices between almost equivalent alternatives. This slight surfeit of

form does not appear to have any negative impact on the readability of SETL programs,

however, and in fact if the programmer always chooses the simplest expression avail-

able, it arguably even confers a minor advantage. For example, most loops can begin

21



Introduction 1.2 A Brief History of SETL

with the comparatively simple SETL2 headers, but there are times when the greater

generality of the full SETL loop construct is preferable, particularly when the exit test

does not fall naturally at the very beginning or end of the loop.

Throughout most of the 1990s, I have continued to work on and with SETL. From

1991 on, I have deliberately been rather conservative about extending the syntax of a

language I already consider to be among the world’s finest, but have not been so hesitant

about its run-time system. My goals are highly pragmatic, as I am a day-to-day user of

SETL as well as a zealous apologist.

Set-theoretic languages have a small though active following, particularly in the

logic and functional programming communities. For example, SPARCL is billed as “a

visual logic programming language based on sets” [192], and is essentially a graphical

shell for a version of Prolog [40] augmented with sets, where constraints on theparti-

tioningof the sets give the language much of its expressive power. Escher [142], on the

other hand, descends from the functional language Haskell [197], and extends the very

general and useful mechanism of list pattern matching on function signatures to accom-

modate sets, which are themselves identified with predicates. Evaluation in Escher is

based on pure rewriting, and although it has no unification built in to its computational

model, the pattern matching and lazy evaluation that are hallmarks of Haskell, together

with an added ability to reduce expressions containing variables, combine to support

logic programming in Escher without sacrificing the advantages of the functional style.

Two Web sites [170, 172] are devoted to various aspects of programming with sets, and

twelve papers were presented at a recent workshop in Paris ondeclarativeprogram-

22



Introduction 1.3 Summary

ming with sets [171]. Declaring goals in preference to specifying operational steps is

again a subject that is close to the heart of logic programming.

1.3 Summary

This chapter has presented some of the general background and motivation of SETL,

and suggested why it remains a language worthy of further study and development.

Since data processing is largely concerned with the interaction of programs with

their environments, the next chapter examines the rich repertoire of input/output and

related facilities that have been added to SETL. Subsequent chapters deal with the

more network-specific provisions, and illustrate the design patterns I have found most

effective in the use of these new tools.

23



Chapter 2

Environmentally Friendly I/O

The CIMS version of SETL as described by Schwartz et al. [181] already had many

features and characteristics that made it useful as a data processing language, both in

general because of its high-level nature and in particular because of such extensions as

the SNOBOL-inspired string pattern matching routines.

However, the implementation was not packaged in the convenient manner of popu-

lar Unix tools such asawk1 or perl, which promote the construction of simple programs

that can be chained, output to input, with other such programs to build up pipelines of

coöperating processes. Also, while the language specification and the the pre-1990

CIMS implementation provided for sequential file- and printer-oriented I/O, it offered

no built-in way to communicate with or spawn external processes.

1Unix 98 [154] functions and commands are not individually cited throughout this dissertation, but
are indicated by a suggestive typeface. This convention is also used for common GNU [87] utilities such
asfmt andperl.

24



Environmentally Friendly I/O 2.1 Invocation Environment

SETL2 added support for direct-access files [191] and asystemprimitive [190]

able to start an external program and wait for it to complete, but still did not offer any

way to communicate with external programs except by way of files.

Distributed data processing depends in a direct and fundamental way upon good I/O

facilities, however, and this chapter describes various extensions to SETL relating to

inter-process communication, including such matters as string and number formatting,

multiplexed I/O, timers, signals, and the Unix 98 interface [154]. Chapter 3 deals with

network-specific extensions. In non-Unix systems, it is expected that where a particular

SETL feature is not easily mapped to a corresponding facility of the operating system,

a SETL implementation will supply a benign substitute or balk as appropriate.

2.1 Invocation Environment

Following SETL2, which adopted the identifiers conventionally used in Ada to refer to

the external name and arguments with which the program (the command) was invoked,

command name

is a predefined constant string that represents, in some environment-defined way, the

name of the program from the point of view of the party that launched it, and

command line

is a predefined constant tuple of strings representing a list of arguments to the program.

25



Environmentally Friendly I/O 2.1 Invocation Environment

Whenever one of the commonly used Unix shells is the caller,command nameand

command line correspond to what C programs receive asargv[0] and the subsequent

argc--1 elements ofargv respectively.

If the setl command is invoked directly, thencommand line will be a tuple of

strings representing the arguments following “----” or “ --x”, and command name will

be the name of the SETL interpreter,setlrun in the default configuration of my current

SETL implementation [19].

If, however, the SETL interpreter is invoked via the “#!” escape common to virtu-

ally all varieties of Unix (though this escape sequence is of unspecified effect according

to the Unix 98 standard), by placing

#! /path/to/setl --k

at the very beginning of a file that otherwise contains a SETL program, and by making

this file executable usingchmod (see Section 2.7), then the filename will be available

inside the SETL program ascommand name and any arguments placed after that

name will be the strings that show up incommand line.

A convenient way of supplying some environmental information to programs is

through environment variables. All widely used operating systems support these in one

form or another. In SETL,

value:= getenvname;

is used to retrieve, as astring, the value associated with the environment variable

namedname. If no such variable is known to the environment,getenvreturnsom.

26



Environmentally Friendly I/O 2.2 Filters, Pipes, and Pumps

Programmers should be aware that the names of environment variables may or may

not be treated case-sensitively, depending on the system. In Unix systems, case is

significant; in DOS-based systems, it is not. I strongly recommend strict adherence

to uppercase as a convention for these names, since that is a portable practice that is

already well entrenched in the Unix community.

A SETL program can also set environment variables for itself and for the benefit of

programs it spawns, using

setenv(name, value); -- associatevaluewith name

wherenameandvalueare both strings, andvaluedefaults to the null string. Finally,

environment variables can be deleted:

unsetenv(name);

2.2 Filters, Pipes, and Pumps

One of the great contributions of Unix to the world of data processing was its ten-

dency to encourage the use of small, modular processes that can be connected together

in pipelines, also known asfilter chains, where the standard (default) output stream of

one process would feed into the standard input of another, the whole chain thus forming

a larger module whose standard input and output would be available for further redirec-

tion to any file, device, or process. Programs designed to act as pipeline elements are

naturally calledfilters. Filtering is usually a one-shot event in the sense that a filter will

27



Environmentally Friendly I/O 2.2 Filters, Pipes, and Pumps

typically read all its input and then quit, having produced some output along the way.

All Unix shells in popular use have the same basic syntax for connecting filters into

pipelines: a vertical bar between two simple command (program) invocations indicates

that the standard output of the first is to be passed into the standard input of the second.

For example,

cat ���.txt jjj fmt --60 jjj wc

concatenates all files with a.txt suffix in the current directory into a stream which is

fed into a command,fmt, that treats its input as text to be left-justified in paragraphs

not to exceed 60 characters in width. The output offmt in turn passes intowc, whose

output is simply a report of the number of lines, words, and characters in its input. If

this pipeline had been typed in at an interactive text command shell, with its output left

attached to the display, the output ofwc, a single line in this case, would simply be

displayed as text looking something like this:

89 378 1429

It is also possible for programs to engage other programs as child processes with

communication arrangements such that the parent’s I/O handle is connected to the stan-

dard input and/or standard output of the child. The unidirectional channels, called

pipes, are typically used by programs to read or write some data through a filter in

situations where it is convenient for the parent to execute several I/O operations in the

course of reading or writing the data.

28



Environmentally Friendly I/O 2.2 Filters, Pipes, and Pumps

The bidirectional case is thepump2 stream, where a program’s I/O handle is con-

nected to both the standard input and standard output of the child process. There is

generally some sort of protocol involved in this case, and the parent-child interaction

will often span considerable real time. We will see many examples of this in Chapter 3,

where processes calledserversdeal with clients only through child processes, each of

which normally exists for the duration of a client connection. Pump streams are also

useful outside the context of networks, as for example when a program spawns local

GUI (graphical user interface) processes.

2.2.1 Filters

Because SETL is good at handling strings, it is convenient to use it both for processing

strings and for passing them to other programs. The SETL statement

output:= filter (cmd, input);

causescmd to be submitted to the standard Unix 98 [154] “shell” command language

interpreter,sh, through its--c (command) argument. The command specified bycmd,

which may internally contain pipeline and other I/O redirection indicators, is run in a

child process. The stringinput, which defaults to the null string, is fed into this child’s

standard input, and the stringoutputreceives everything that issues from its standard

output stream.

2Pumpis a term I have used for many years. Unix has never really embraced the notion of a bidirec-
tional buffered stream.

29



Environmentally Friendly I/O 2.2 Filters, Pipes, and Pumps

If filter is unable to create a child process due to resource exhaustion, it returns

om. When the stringinput is non-null, two child processes may need to be created:

one to run the commandcmd, and one to feedinput into the command. The parent

SETL process remains as the “consumer” that builds a string containing the command’s

output, to be returned to the caller offilter .

The following is a simple example of the use offilter to format and left-justify

text so that it fits within a prescribed width such as might be imposed by a user’s text

window. The program in Section A.33 uses this technique. This subroutine runs an

external command,fmt, to insert end-of-line characters in the appropriate places:

proc fill message(text,width); -- wrap text
return filter (‘ fmt --’ + str width, text);

end proc;

In this example,str is used to convert the presumed positive integer parameterwidth to

a decimal string, which is appended to ‘fmt --’ to form the whole command including

the command-line parameter. The stringtext is filtered throughfmt, and the formatted

result is returned.

2.2.2 Pipes

A unidirectional stream connected to the standard input or standard output of an child

process is called apipe.

In SETL, here is how to start an external command as a child process and open an

input pipe stream connected to its standard output:

30



Environmentally Friendly I/O 2.2 Filters, Pipes, and Pumps

fd := open(cmd, ‘pipe--from’); -- or ‘pipe--in’

To launch an external process with an output pipe stream connected to its standard

input, use

fd := open(cmd, ‘pipe--to’); -- or ‘pipe--out’

In both of these cases,cmdcan be any string that makes sense to the environmental

command interpreter (the shell), just as forfilter .

The stream handle returned byopen in the above prototypes is assigned to the

variable fd, as a mnemonic forfile descriptor. The SETL programmer should treat it

as opaque and certainly never do arithmetic on it, but may wish to be aware, especially

when setting up communication with programs written in languages other than SETL,

that the SETL file descriptor is exactly the integer that is assigned by the kernel as

the result ofopen and related calls, and is called a file descriptor throughout the Unix

literature. SETL implementations are expected to provide buffering over this handle,

as detailed in Section 2.2.4. Ifopen fails to create a child process due to resource

exhaustion, then it returnsom instead of a valid file descriptor.

Below is an example of the use of ‘pipe--from’, where an input pipe stream is con-

nected to the standard output of the Unixls command to obtain a list of files in the

current working directory, one filename per line. To each filename read from thels

process, the SETL program applies thefsizeoperator to discover the size of the named

file in bytes, and prints the resulting integer right-justified in a 10-character field beside

the left-justified filename, separated by a space:

31



Environmentally Friendly I/O 2.2 Filters, Pipes, and Pumps

fd := open(‘ ls’, ‘ pipe--from’); -- open file-listing subprocess
while (name:= getline fd) 6= om loop -- loop for each input name
print (whole (fsizename, 10), name); -- print file size and name

end loop;
close( fd); -- close child process

Here is an example of ‘pipe--to’, where the SETL program opens a stream to a print

spooler,lpr:

log fd := open(‘ lpr’, ‘ pipe--to’);
printa (log fd, ‘Log begins at’, date);

There are also primitives namedpipe from child and pipe to child which are

essentially degenerate forms of thepump primitive described in Section 2.2.3.

2.2.3 Pumps

An external command can be started as a child process with its standard inputand

output connected to a bidirectional stream in the parent SETL program as follows:

fd := open(cmd, ‘pump’);

Even without the direct appearance of sockets, this is a powerful tool for distributed

computing, because the stringcmd can specify an invocation ofrsh to execute, for

example, thespitbol command on a remote host even if the local one doesn’t have

spitbol executably installed, or wishes to distribute its load.

Sometimes, instead of starting an external command as the specification of a child

process, it is convenient to create the child as a clone of the currently executing SETL

32



Environmentally Friendly I/O 2.2 Filters, Pipes, and Pumps

program. The new nullary primitivepump creates a child which inherits a copy of

the parent SETL program’s data space in the manner offork (see Section 2.17.2). If

successful, it returns�1 in the child and returns a bidirectional file descriptor in the

parent, connected to the standard input and output of the child. If unsuccessful due to

resource exhaustion, it returnsom, as does the ‘pump’ mode ofopenabove:

fd := pump(); -- the optional “()” suggests more than a mere fetch

This fragmentary code template shows how to usepump:

fd := pump(); -- spawn clone
if fd = �1 then
-- Child: I///O on stdin, stdout, which are connected to parent’sfd
...

stop; -- normal exit
end if;
if fd 6= om then
-- Parent: I///O on fd until EOF tells us the child has completed
...

close( fd); -- clear child from process table
else
-- Child process could not be created—handle or ignore failure
...

end if;

The reason it usually works best to put the child code first is that it is a program in

miniature, exiting just before the end of the block that contains it, whereas the parent

is most likely to save the newfd and carry on. It would be clumsy to have the parent’s

code section end with a branch around the child’s code. An exception to this rule is

where that branch is really areturn , as in this generic launcher:

33



Environmentally Friendly I/O 2.2 Filters, Pipes, and Pumps

proc start helper(helper); -- launchhelperand return its pump fd
fd := pump(); -- spawn clone
if fd = om then
-- No child created
return om ; -- failure return

elseif fd 6= �1 then
-- Parent process, withfd connected to child
return fd; -- caller will use and then closefd

end if;
-- Child process, withstdin andstdout connected to parent
call (helper); -- indirect call to thehelperprocedure
stop; -- guard againsthelperneglecting to exit

end proc;

One program which usespump is the second version ofimpatient.setl in Section 3.3.1.

2.2.4 Buffering

For output to files, print spoolers, and one-shot filters, the SETL programmer may never

need to be aware of buffering, but when processes are interconnected through pipes

and pumps, there are times when it will be necessary to tell the I/O system explicitly to

move all data currently accumulated in a stream buffer out to the receiver. This is done

by the following call:

flush ( fd); -- get the kernel caught up

One feature of the pump stream, whether created bypump or by open specifying

mode ‘pump’, is that its output side is automatically flushed whenever a read from

its input side is attempted. In fact, this is true for all bidirectional and direct-access

34



Environmentally Friendly I/O 2.2 Filters, Pipes, and Pumps

streams created by SETL, such as the ones listed in Section 2.3 and the socket streams

introduced in Chapter 3.

This automatic flushing association between the input and output sides of a bidi-

rectional stream is calledtying, and can also be requested between any otherwise inde-

pendent pair of streams where one is open for input and the other for output, using the

call:

tie ( fd in, fd out); -- autoflushfd out on eachfd in input try

Thus it is common to see the statement

tie (stdin, stdout); -- autoflushstdout on eachstdin input try

near the beginning of SETL programs intended to be invoked through the ‘pump’ mode

of open. This association is made automatically in the child process arising from a

successfulpump call. A program intended merely as a filter, by contrast, willnot tie

stdin to stdout if it wishes to operate line by line internally and yet remain buffer-

efficient.

Buffering is not part of the SETL language specification, but implementations are

expected to make the behavior as much like that of theFILE type in the Cstdio library

as possible. By default,stderr should be flushed after every character, and other out-

put streams should be “block buffered” (meaning only automatically flushed when the

buffer fills up) except when connected to a terminal-like device, in which case they

should be “line buffered” (flushed at least after each output line).

35



Environmentally Friendly I/O 2.2 Filters, Pipes, and Pumps

2.2.5 Line-Pumps

There is one more variant of the versatile pump stream, available through the I/O mode

‘ line--pump’:

fd := open(cmd, ‘ line--pump’); -- or ‘tty--pump’

The difference between aline pumpand a regular pump is that the environment

provided to the child process in the case of the line pump is as much as possible like a

line-by-line virtual terminal. Many programs, including the usual Unix shells, govern

their behavior according to whether the output model is another program or a user at

such a terminal.

Most significantly, the standard Cstdio library uses line buffering (in the sense

described in Section 2.2.4) instead of block buffering on the standard output stream

when it is connected to a line-by-line terminal, and programs rarely change this de-

fault. Hence it is possible to use many “off-the-shelf” programs as co¨operating child

processes even when they were intended as filters, at the cost of assuming something

about each such program’s implementation, specifically its output flushing policy.

The line pump is a rather specialized feature and probably best avoided in code

intended to be ported easily outside the Unix world, but it can be very handy for setting

up automated interactions with programs such as mail clients. For example, I was easily

able to expunge several thousand unwanted mail messages that an out-of-control robot

recently sent me, by the simple expedient of having a small SETL program invoke the

Unix Mail client program and “type” the deletion command in response to each message

36



Environmentally Friendly I/O 2.3 Sequential and Direct-Access I/O

it recognized as being from the robot.

2.3 Sequential and Direct-Access I/O

Apart from the I/O modes which create “sockets” as detailed in Chapter 3, the pipe and

pump modes of Section 2.2, and the signal and timer modes described in Section 2.4,

the choices of second (“mode”) parameter toopen (some of which have appeared in

previous versions of SETL) are as follows. There are many synonyms here, largely

for the sake of backward compatibility. There is no distinction between “binary” and

other modes. Translation of end-of-line sequences on non-Unix systems is expected

to be done by external filters if necessary, and the older meaning of binary I/O as

input or output of some machine-level representation of SETL values is obsolete—the

efficiency advantage of such modes is negligible, and the inconvenience significant.

Moreover, SETL strings can accommodate any bit pattern that might be required by a

foreign data format, so the coverage of needs in this regard is complete:

MODE SYNONYMS MEANING

‘ r’ ‘ rb’, ‘ input’, ‘ text’, ‘ text--in’, ‘ coded’, stream input
‘coded--in’, ‘ binary’, ‘ binary--in’

‘w’ ‘ wb’, ‘ output’, ‘ print’, ‘ text--out’, stream output
‘coded--out’, ‘ binary--out’

‘a’ ‘ ab’, ‘ append’, ‘ output--append’, stream output
‘print--append’, ‘ text--append’, starting at
‘coded--append’, ‘ binary--append’ end of file

37



Environmentally Friendly I/O 2.3 Sequential and Direct-Access I/O

‘n’ ‘ nb’, ‘ new’, ‘ text--new’, ‘ new--text’, stream output to
‘coded--new’, ‘ new--coded’, new file
‘binary--new’, ‘ new--binary’

‘ rw’ ‘ read--write’, ‘ input--output’, bidirectional
‘ twoway’, ‘ two--way’, ‘ bidirectional’ stream

‘ r+’ ‘ rb+’, ‘ r+b’, ‘ direct’, ‘ random’ direct access file

‘w+’ ‘ wb+’, ‘ w+b’ empty file and then
do direct access

‘a+’ ‘ ab+’, ‘ a+b’ direct access file,
always write at end

‘n+’ ‘ nb+’, ‘ n+b’, ‘ new+’, ‘ new--r+’, direct access to
‘new--w+’, ‘ direct--new’, ‘ new--direct’, new file
‘ random--new’, ‘ new--random’

2.3.1 Sequential Reading and Writing

Most of the names of the sequential I/O routines in the current version of SETL have

appeared in previous versions, but there are a few new ones, and the semantics of some

of them are slightly different from both CIMS SETL and SETL2 (which of course differ

from each other):

get (line1, line2, . . .); -- getafrom stdin
geta( fd, line1, line2, . . .); -- line1, line2, . . . arewr args
getb ( fd, lhs1, lhs2, . . .); -- lhs1, lhs2, . . . arewr args
c := getc fd; -- retrieve one character
c := getchar (); -- getcfrom stdin, “()” optional
s := getfile fd; -- all characters up to EOF
s := getline fd; -- one input line
s := getn ( fd, n); -- up to n characters

38



Environmentally Friendly I/O 2.3 Sequential and Direct-Access I/O

c := peekc fd; -- look ahead one character
c := peekchar(); -- peekcfrom stdin, “()” optional
print (rhs1, rhs2, . . .); -- printa to stdout
printa ( fd, rhs1, rhs2, . . .); -- space-separated values on a line
nprint (rhs1, rhs2, . . .); -- print without line terminator
nprinta ( fd, rhs1, rhs2, . . .); -- printa without line terminator
put (line1, line2, . . .); -- puta to stdout
puta ( fd, line1, line2, . . .); -- line1, line2, . . . arerd args
putb ( fd, rhs1, rhs2, . . .); -- rhs1, rhs2, . . . arerd args
putc ( fd, s); -- s is any string
putchar (s); -- putc to stdout
putline ( fd, line1, line2, . . .); -- same asputa
putfile ( fd, s); -- similar toputc
read (lhs1, lhs2, . . .); -- reada from stdin
reada ( fd, lhs1, lhs2, . . .); -- read and convert values
write (rhs1, rhs2, . . .); -- writea to stdout
writea ( fd, rhs1, rhs2, . . .); -- same asputb

Print , printa , putb, write , andwritea takerd arguments of any type, and write

strings on a single line, with spaces between the represented values.Nprint and

nprinta are just likeprint and printa respectively, but leave the output line unter-

minated. Putb is functionally identical towritea, and converts values the same way

str does.Print andprinta , however, treat strings as a special case, and leave them un-

quoted.Put andputb actually require strings, and if there is just one string argument,

put behaves likeprint .

Readandreada can read any value written bywrite or writea, except for atoms

(produced bynewat) and procedure values (produced byroutine). Reada differs

subtly fromgetb in that it absorbs all characters up to the end of the line after reading as

many values as directed by the presence ofwr arguments, whereasgetbdoes not—the

39



Environmentally Friendly I/O 2.3 Sequential and Direct-Access I/O

nextgetb will pick up where the previous one left off. This accords with the historical

intent of these routines. (Theb in getb andputb stood for “binary”, a mode to which

the notion of a line boundary was foreign.) Tokens representing input values need to

be separated by commas and/or runs of whitespace.

Putfile is identical toputc except thatputfile will automatically close an automat-

ically opened file (see Section 2.10).Puta is the same asputline, and puts a line

terminator (a newline character in Unix) after each string it writes.Putc does not so

terminate lines.

Thegetlineoperator reads up to the end of the current line (or to the end of the file,

if the line is not terminated), but does not return any line terminator.

All input functions and operators, if the end of file is encountered before any char-

acters are read on the call, returnom. Procedural forms such asreada andgetaassign

om to unsatisfiedwr arguments.

2.3.2 String I/O

As in SETL2, it is possible to “read” from a string:

reads(s, lhs1, lhs2, . . .); -- lhs1, lhs2, . . . arewr args

This is not strictly compatible with the SETL2 version, which “consumes” value deno-

tations fromsand thus requiress to be writable as well as readable. The SETL version

of reads(s, lhs1, lhs2, . . .) is roughly equivalent to

[[[lhs1, lhs2, . . .]]] := unstr (‘ [’ + s+ ‘ ]’)

40



Environmentally Friendly I/O 2.3 Sequential and Direct-Access I/O

except thatreads, like read andreada, will tolerate trailing “junk” characters after a

delimiter that terminates the last denotation needed to satisfy the last writable argument.

See Section 2.14.2 for more information onunstr.

There is currently no correspondingwrites or prints for string formatting. Ar-

guably there should be, for completeness, but meanwhile, it is quite convenient simply

to concatenate strings produced by the conversion primitives of Section 2.14.2 on those

occasions when it is necessary to buffer intermediate string forms.

2.3.3 Direct-Access Files

For a stream opened in one of the direct-access modes listed at the beginning of this

section, there are four special operations available, all of which employ the concept of

a “current position” that is implicit in all file I/O. There is no distinction between input

position and output position.

The current position can be explicitly set with the call

seek( fd, offset);

where anoffsetof 0 represents the beginning of the file. Also,

rewind ( fd);

is equivalent toseek( fd, 0). Positions (offsets) are measured in characters.

For SETL2 compatibility,

41



Environmentally Friendly I/O 2.4 Signals and Timers

gets( fd, start, length,lhs); -- lhs is awr arg
puts ( fd, start, s);

combine position manipulation with I/O. Note thatstart obeys string indexing conven-

tions, and must therefore be at least 1, corresponding to a file offset of 0. Forgets, if

the end of file is reached beforelengthcharacters have been read,lhswill be assigned a

string of fewer thanlengthcharacters.Getsandputs update the current position after

doing their reading or writing, respectively.

2.4 Signals and Timers

SETL programs can “read” high-priority signals from other processes, from the kernel,

and from periodic timers. The I/O system is also used to specify signals that are to be

ignored, meaning in most cases relieved of the duty of terminating the process.

Routing signals and timer alarms through the I/O system, and making their asso-

ciated streams candidates for multiplexed event-sensing through theselectroutine de-

scribed in Section 2.5, are of great value in helping to create small, modular processes

that are simultaneously responsive to I/O events, signals, and the passage of time.

2.4.1 Signals

A SETL program arranges to receive signals of a given type by opening a stream on the

signal name, such as INT, HUP, or TERM, contained case-insensitively in a string such

as ‘INT’, ‘ HUP’, or ‘ TERM’ respectively, or even ‘SIGINT’, ‘ SIGHUP’, or ‘ SIGTERM’.

42



Environmentally Friendly I/O 2.4 Signals and Timers

The full list of signal names supported by a given Posix-compliant Unix system can be

obtained from thekill command through its “list” parameter (a lowercase L):

kill --l

Descriptions of the signals can usually be found on Unix systems in the customary way,

i.e., through a command likeman signal, and further details are often available in the

C “header” files, normally under the directory/usr/include. Section 2.8 shows how to

send signals; the present section is about how to receive and process them.

To start intercepting signals, a SETL program executes

fd := open(signal name, ‘signal’); -- or ‘signal--in’

For example,signal namemight contain ‘HUP’ or ‘ SigHup’, in which case subsequent

HUP signals sent to the SETL process will be caught and presented to the SETL pro-

gram as lines of input onfd, one signal per line. When the SETL program detects that

a signal of this type has been sent to it (this detection will often be through theselect

routine discussed in Section 2.5), it should explicitly receive the signal by reading a

line from the stream’s file descriptor, e.g.,

line := getline fd;

At the time of this writing, the resultingline is specified only to contain at least the null

string, but for some signal types, collateral information may eventually prove useful.

To remain upwardly compatible, therefore, SETL programs should read whole lines

from signal streams.

43



Environmentally Friendly I/O 2.4 Signals and Timers

A signal type may have any number of streams open over it, and a line will be

delivered to all of them whenever a signal of that type is caught.

If a particular type of signal is not being caught, because no streams are open over

it, signals of that type may still be stripped of their default effect on the SETL process

(which for many is to terminate the process) by being explicitly ignored:

fd := open(signal name, ‘ ignore’); -- or ‘ignore--signal’

The only meaningful thing that can be done with thefd returned in this case is toclose

it. When the last ignoring stream on the given signal type is closed, the default behavior

of the signal type is restored unless there are by then signal-receiving streams open on

that type. If there are both receiving and ignoring streams open on a given signal type,

the receivers take precedence—incoming signals will be delivered rather than being

ignored.

2.4.2 Timers

A SETL program may open any number of recurring interval timer streams based on

“wall-clock” time, user-mode CPU time, or total CPU time:

fd := open(ms, ‘real--ms’); -- wall-clock time
fd := open(ms, ‘virtual--ms’); -- user-mode CPU time
fd := open(ms, ‘profile--ms’); -- total CPU time

Themsargument in each of these timer cases is actually a string consisting of decimal

digits to be interpreted as the number of milliseconds that is supposed to elapse between

44



Environmentally Friendly I/O 2.5 Multiplexing withSelect

each time a new line becomes available on that stream. These timer I/O modes make

implicit use of the signals ALRM, VTALRM, and PROF respectively.

The file descriptors returned byopenfor signal and timer streams are “pseudo-fd’s”

in that they have no existence at the Unix level. This decision to to route signals and

timers through the SETL I/O system was made primarily so thatselect(Section 2.5)

can sense timing and other signals simultaneously with regular I/O events.

2.5 Multiplexing with Select

Event-driven programs need to be able to wait for any of a set of I/O events simulta-

neously, and then identify which channels can be read or written without blocking the

process.

In SETL, the routine to do this is calledselect, after theselect routine introduced

in 4.3BSD Unix. It takes a tuple of up to three sets of file descriptors as one parameter,

and an optional timeout value as another. The sets identify streams that may become

(1) ready for reading, (2) ready for writing, and (3) ready to return an error indica-

tion. The last of these has no specific meaning within SETL, though the environment

may assign some. The most typical call, with only a set of potentially readable file

descriptors specified, is

[[[ready]]] := select([[[readfds]]], timeout);

and the general case is

45



Environmentally Friendly I/O 2.6 Files, Links, and Directories

[[[r ready, w ready, e ready]]] := select([[[readfds, writefds, errorfds]]], timeout);

The result setready or r ready is a subset ofreadfds, and lists those streams from

which something can be read without blocking. Note that this does not say how many

characters can be read, and in fact zero is possible, such as when end-of-file is imme-

diate. Similar considerations apply to output, although in practice, operating systems

and networks may themselves buffer packets and allow a program to flush all its output

long before the receiver is actually ready.

Furthermore,readfdsmay include file descriptors on whichaccept(Section 3.1.2)

can be called without blocking, and pseudo-fd’s for signal and timer streams (Sec-

tion 2.4.2) when they have lines to deliver.

Thetimeoutparameter, which is an integer number of milliseconds, can be omitted

to specify an indefinite wait, or can be as low as 0 to effect “polling”.

We will find in Chapters 3 and 4 that it is convenient to structure virtually every

TCP/IP server as a loop around aselectcall.

2.6 Files, Links, and Directories

Given a file descriptor, it is possible to recover the filename that was originally passed

to open if that is available in the current process, as the string-valued expression

filename fd

As with the other I/O routines,fd can in fact be that original filename, in which case

this call merely checks that the file is currently open and returns the filename. It is also

46



Environmentally Friendly I/O 2.6 Files, Links, and Directories

possible to obtain the file descriptor corresponding to an open file as designated by its

name or file descriptor, as the integer-valued expression

fileno fd

Again, this is just a checking identity function for open file descriptors, sometimes used

in the idiom

fd := fileno open(name, . . .);

as a way of ensuring that anom return fromopenimmediately causes a run-time error.

To facilitate the use of SETL in a “shell” programming role without the need of

resorting to running an external command, the boolean-valued expression

fexistss

for any strings indicates whether a file named by the contents ofs exists in the local

environment. Similarly, the integer-valued expression

fsizes

is the number of bytes in the file named in the strings, if the file exists.

Ordinary files are created automatically when they are first opened for writing, but

the creation and manipulation of “links” requires the use of certain special functions. A

“hard” link is created atomically by the following routine, ifexistingis a string naming

a file that exists before the call, andnewnames a file that does not exist before the call:

47



Environmentally Friendly I/O 2.6 Files, Links, and Directories

link (existing, new); -- existingandneware filenames

After the call,existingandneware equivalent references to the same file. Ifexisting

does not exist before the call, or ifnewalready exists,last error is set to something

other thanno error (see Section 2.13).

In a local filesystem,link can be used to implement a “test and set” mutex: assum-

ing existingexists, then ifnewalso exists, the operation will fail, but if it doesn’t exist,

then it will be created and the calling process will “own” the mutex lock until it releases

it by callingunlink (see below) onnew.

Similarly, a “symbolic” link can be created by the call

symlink (s, new); -- s is an arbitrarystring

There is no requirement that a file nameds exist beforehand in order for this call to

succeed, although it will fail ifnewalready exists. Thussymlink can be used to imple-

ment a mutex in much the same manner aslink , but with the added benefit thatnewcan

be “pointed at” an arbitrary string. This may, for example, embed information about

the process that currently holds the lock, a technique that is used by thevc-toplev.setl

program listed in Section A.42.

In order to find out whether a particular symbolic link currently exists in the filesys-

tem under a name given in a strings, the boolean-valued expression

lexistss

48



Environmentally Friendly I/O 2.6 Files, Links, and Directories

is used. Note that whenfexistsis applied to a symbolic link, it interrogates the existence

of the file referred to by that link, whereas whenlexistsis applied to a symbolic link, it

merely interrogates the existence of the link itself.

The use oflexistson a name intended to represent a mutex lock is unlikely to occur

in code that is free of race conditions. For race-free operation, the following sequence

has the requisite test-and-set atomicity:

clear error ;
symlink (my id, lockfile);
if last error = no error then
-- we have the lock
...

unlink (lockfile); -- release the lock (unlink is defined below)
else
-- some other process has the lock
...

end if;

Whens is known to name a symbolic link, its associated text is available as the

string-valued

readlink s

If s names something that exists but is not a symbolic link, or something that does not

exist, thenreadlink returnsom and setslast error according to which case applies.

By contrast, an attempt to read data froms will fail if s names something nonexistent

or a symbolic link pointing to something nonexistent (ultimately, since symbolic links

can point to filesystem entries that are themselves symbolic links, up to some system-

imposed limit on the number of indirection levels).

49



Environmentally Friendly I/O 2.6 Files, Links, and Directories

Finally,

unlink (s);

can be used to destroy a hard link or a symbolic link. When the last hard link to a file

is destroyed in Unix filesystems, the file itself is destroyed as soon as the last process

that has it open closes it. (Creating a file is the act which creates the first hard link to

the file.) Thusunlink is the standard routine for destroyinganyfile in Unix.

Sometimes, a program will desire the use of a “scratch” file, though this need is

declining with the increase in virtual memory sizes. Because these will often have to

reside in a shared public area, the primary consideration becomes simply that of choos-

ing a unique filename. The Unix routinetmpnam is the scratch filesystem analogue of

the SETLnewat generator, and the nullary SETL primitive

tmpnam() -- trailing “()” optional, as usual

usestmpnam to yield a string filename that is “reserved” for the calling program.

The current working directory, which is a notion supported by every modern oper-

ating system, is available in SETL as the string-valued

getwd -- trailing “()” optional

and can be changed using the call

chdir (dirname);

Theumask routine pertaining to file access rights is explained in Section 2.7.

50



Environmentally Friendly I/O 2.7 User and Group Identities

2.7 User and Group Identities

The routines in this set are useful only on systems that support the notion of users

and groups thereof, and are most useful on systems that distinguish “real” from “ef-

fective” users and groups. On systems with no such support, the “getters” should be

implemented to return 0, and the “setters” should act as no-ops:

uid := getuid(); -- get real user id
uid := geteuid(); -- get effective user id
gid := getgid(); -- get real group id
gid := getegid(); -- get effective group id
setuid (uid); -- set at least the effective user id
setgid(gid); -- set at least the effective group id

Thesetuid (setgid) procedure sets the real and effective user (group) id if the effective

caller is the superuser. Otherwise, the effective id is set to the requested value if it

matches the real id or it matches the id associated with the file to whichexec was last

applied prior to starting the SETL run-time and that file has the appropriate (“allow

set-user-id” or “allow set-group-id”) bit set in order to permit just such a change of

effective id. If the requested identity change cannot be performed,last error (see

Section 2.13) will show the error. If the call succeeds, however, the process acquires

the privileges of the effective id. It is not a good idea to make the executable file of a

public SETL interpreter allow setting of the user or group id like this, or any user will

be able to execute arbitrary SETL programs using the user or group identity attached

to the interpreter file, simply by inserting asetuid or setgidcall.

51



Environmentally Friendly I/O 2.7 User and Group Identities

An example of a superuser process that needs to be able to change “down” to an

ordinary user process is a login daemon such asrlogind or a periodic process-spawning

daemon such ascrond. It is also sometimes convenient for one user to own a program

which, when run by another user, has available the privileges of both,setuidbeing used

to toggle the effective user id back and forth between the two users as necessary. For ex-

ample, when my students at Lehigh University submit their programming assignments,

they unwittingly run a SETL program which assumes the identity of the submitter (the

real user id) when it picks up files from their private directories, and takes on my iden-

tity (the effective user id, the owner of the script from which the SETL program is

launched) when it squirrels an image of the submitter’s files away in a private area al-

lotted by me. No superuser privileges are required to implement such a scheme, though

of course some care had to be exercised in designing those parts of the program which

execute “as me”, so as to avoid such perils as allowing one student to consume all my

disk space and thereby preventing other students from submitting their assignments.

The flags attached to a file depend on the filesystem hosting the file, and their exact

interpretation depends on the host operating system. However, if the filesystem main-

tains, for each file, 3 ordered sets labelled User, Group, and Others, each set consisting

of 3 bits labelled Read, Write, and Execute, then there is a Posix-based routine for con-

trolling an environmental mask value which determines which bits are set when files

are subsequently created by the SETL program:

mask:= umask(); -- get file creation bit-mask
umask (mask); -- set file creation bit-mask

52



Environmentally Friendly I/O 2.7 User and Group Identities

The 9 bits represented by octal 666 are OR’ed with the inverse of this mask to determine

what bits are initially set in new files. For example, a user who wants new files to be

created with read and write access for the user (the owner), and read-only access for

everyone else, might code:

umask (8#022#); -- Userfrw-g, Groupfr--g, Othersfr--g

This environmental file creation mask is inherited by processes, and every Unix shell in

common use has a built-inumask command that calls the corresponding Unixumask

function. On systems where this mechanism is absent, SETL implementations are

expected to treat theumasksetter as a no-op, and have the getter return 0.

The use of octal is such a natural and customary choice here that some programmers

even tend to use it on the system command that normally manipulates these bits,chmod.

For example, if it is desired to make a filefoo universally executable after it has been

created with the “octal 644” permissions suggested by the example above, this can be

done with either of the following calls:

system(‘chmod +x foo’); -- merge 8#111# withfoo’s current bits
system(‘chmod 755 foo’); -- setfoo’s bits tofrwxg, fr-xg, fr-xg

The chmod command or subroutine can also be used to set the bits which cause the

effective user or group id to be changed to that of the file owner (as opposed to the

process owner) when the file is used to replace a process image byexec, thus giving

the executing program the rights of the file owner together with the ability (viasetuid

or setgid) to switch between those and the rights of the process owner. For example,

53



Environmentally Friendly I/O 2.8 Processes and Process Groups

if you want other people to be able to update your database only through yourfoo

command, you might execute:

system(‘chmod u+s foo’); -- makefoo allow setuid to thee or me

2.8 Processes and Process Groups

An open pump stream is always connected to a child process, whose process id (see

Section 2.17.2) can be retrieved by the integer-valued expression

pid ( fd)

If fd is omitted,pid just returns the process id of the calling process, like the Unix

getpid routine.

The existence of a process can be interrogated by the expression

pexistsid

which tests whetherid is the process id of a process currently known to the host oper-

ating system. This will betrue even if the referred-to process has already exited but

not had its status “reaped” yet by some equivalent ofwait (again, see Section 2.17.2).

Finally, to send a signal to any existing process, a SETL program can execute the

built-in

kill (id, signal name);

54



Environmentally Friendly I/O 2.8 Processes and Process Groups

If signal nameis omitted, it defaults to ‘TERM’. As with signal names passed toopen,

alphabetic case is not significant, and the prefix ‘SIG’ is optional. Kill also allows an

integer-valued signal number to be used in place of a signal name. Ifid is positive, it

is taken as a process id, but if it is less than –1, its absolute value is taken as a process

group id (see the description ofgetpgrp below), and the signal is sent to all members

of that process group. Anid of 0 is equivalent to –getpgrp, i.e., all members of the

caller’s process group. Anid of –1 causes the signal to be sent to all processes to which

the caller has permission to send signals. For user-level (non-superuser) processes,

–1 therefore stands for all processes owned by the user associated with the calling

process (seegetuid in Section 2.7).

Most signals cause process termination, sometimes with other side-effects such as

creating a filecore (an image of the final virtual memory state of the process). As de-

scribed in Section 2.4.1, the recipient may also have altered its default signal-handling

behavior. One signal, ‘KILL’, is designed to be impossible to trap in this way, providing

a method of last resort to arrest otherwise uninterruptible processes.

A full discussion of the semantics of signals is outside the scope of this dissertation,

but the Unix 98 documentation [154] on thesigaction function and on the<<<signal.h>>>

C header file gives more details.

In Unix, each new process belongs initially to the process group of its parent. The

value of

getpgrp -- trailing “()” optional, as usual

55



Environmentally Friendly I/O 2.9 OpenCompatibility

is the process group id, an integer. The call

setpgrp;

sets the process group id equal to the process id. If this is the first time the process has

calledsetpgrp, it establishes a new process group, of which the calling process is the

leader.

The main significance of process groups is in the distribution of signals. If the first

argument to thekill routine described in Section 2.8 is less than –1, its absolute value

is taken to be a process group id, and the signal passed tokill is sent to all processes in

that process group. This can be convenient for taking down whole trees of processes at

once, though in practice, more orderly shutdowns are often attempted first.

2.9 OpenCompatibility

For backward compatibility, it is permitted in SETL to ignore the result ofopen(which

in the old CIMS SETL returnedtrue or false), and simply refer to open files by the

same name as originally passed toopen in all subsequent I/O calls, provided this name

is unambiguous (which willnot be the case when the same file is open more than once

simultaneously, or when more than one child process identified by the same command

string, such as ‘wish’, is open).

SETL2 programs, which must treat the “file handle” returned by the SETL2openas

an opaque entity, should be immediately portable to the SETL described here without

56



Environmentally Friendly I/O 2.10 Automatically Opened Files

change, except that some differences will be observed in the way values are presented

by the corresponding versions of procedures likeprinta .

2.10 Automatically Opened Files

Files areautomaticallyopened in ‘r’ or ‘ w’ mode if a stream input or output operation

is initiated on a previously unmentioned name. For an auto-opened input file, when

an end-of-file condition is sensed, the stream is auto-closed. The only routine which

auto-closes a stream that was auto-opened foroutputis putfile, making it a partner to

getfile in using the environmental filesystem as an elementary persistent database.

In order to discover whether a particular stream is open (either as a result of auto-

matic opening or a successfulopencall), the boolean-valued expression

is open f

can be applied to a filename or file descriptorf without causing any side-effects such

as the setting oflast error .

2.11 Opening Streams Over File Descriptors

In all the definitions in this chapter so far, the first argument toopenhas been a string

giving a filename, command, signal type name, or number of milliseconds, but it can

actually be an integer file descriptor, which may for example have been inherited, or

produced by one of the low-level routines listed in Section 2.17.1. A major use of the

57



Environmentally Friendly I/O 2.12 Passing File Descriptors

‘ rw’ I/O mode (Section 2.3) is in fact to obtain a SETL stream over an inherited file

descriptor about which the inheritor knows and cares nothing except that the stream is

bidirectional. There is an example of this in the programlengths.setl in Section 3.2.2.

A pseudo-fd returned byopen for a signal or timer stream cannot be used as a first

argument toopen. It would not be a very useful feature, since signal handlers do not

survive theexec calls implicit inexec(Section 2.17.2),system, filter , and pipe or pump

streamopen(Section 2.2) calls.

2.12 Passing File Descriptors

The normal inheritance of file descriptors by child processes suffices for many pur-

poses, one of the most typical being when servers use child processes to deal with

clients, as is illustrated by several examples in Section 3.2.

However, there are cases where it is convenient to be able to pass file descriptors

to existing processes. For example, anhttpd daemon will often optimize performance

by maintaining a pool of child processes. Rather than spawning a new process for each

new request, the daemon may pass the file descriptor created for the corresponding

connection down to an existing process for handling. Passing file descriptors “up” a tree

of processes can also be useful, such as when a child process is appointed to perform an

openand related activities that might result in a crash. If the child process completes

this extendedopen operation successfully, it can safely pass the new file descriptor

up to the parent process, whereas if it crashes, no harm is done. (Isolating delicate

58



Environmentally Friendly I/O 2.12 Passing File Descriptors

operations in small processes to limit the damage they can do is a running theme of this

dissertation—cf. Chapter 3, and Sections 4.2.1, 4.2.2, 5.3.2–5.3.4, and 6.5.)

In order for a file descriptor to be passed, the sender and receiver must already share

a pipe or pump stream for its conveyance. Given a writable file descriptorpd1 for such

an open stream, and a file descriptorfd1 to be passed, the sender executes

send fd (pd1, fd1);

and makes a rendezvous with the receiver, which has a readable file descriptorpd2 for

its end of the conveyance stream and executes

fd2 := recv fd pd2;

Note that the resultingfd2 is allocated in the receiver’s process space, and may be nu-

merically different fromfd1, even though it refers to the same kernel structure. It is an

alias, chosen automatically in the same way as by the low-leveldup routine described

in Section 2.17.1.

The mechanism underlying this generalized passing of file descriptors is defined

in Unix 98, but at the time of this writing is not yet present in all versions of Unix in

common use. In some versions an alternative mechanism exists, though in some of

those it is only available to superuser processes. This situation will surely improve,

but programs which usesend fd or recv fd cannot currently be considered fully Unix-

portable in practical terms. Solaris is among the operating systems in which full fd-

passing support is already implemented, however.

59



Environmentally Friendly I/O 2.13 Normal and Abnormal Endings

2.13 Normal and Abnormal Endings

Normally, I/O can proceed until it is time to call

close( fd);

on a given file descriptor,fd. The most common reason for closing a stream is that an

end-of-file condition has been encountered. The value of

eof ( fd)

is true or false depending on whether an attempt to read past the end of the input

available fromfd has been made. Thefd parameter is optional on theeof call; the

value of

eof -- trailing “()” optional

is true or falsedepending on whether the last input attempt onanystream failed on an

end-of-file condition.

The responsibilities ofcloseinclude flushing the output buffer if necessary, possibly

waiting for a child process to complete, and releasing the buffer and kernel resources

associated with the system-level file descriptor. It is also permitted to applycloseto a

file descriptor that is only open at the operating system level and not at the SETL level,

as mentioned in Section 2.17.1.

For bidirectional streams, one direction may be closed without closing the other by

calling

60



Environmentally Friendly I/O 2.13 Normal and Abnormal Endings

shutdown ( fd, how);

wherehow is one of the predefined constantsshut rd , shut wr , or shut rdwr . Even

if both directions are closed in this way, the file descriptor remains open at the SETL

level. One use ofshutdown is to cause an end-of-file condition to be signalled to a

TCP peer (see Chapter 3), to indicate that the local process is done sending data but

would still like to receive a reply. Stevens [194] mentions several others in conjunction

with the Unix 98shutdown routine (whichshutdownalso calls).

Whenopen fails, it returnsom instead of an integer file descriptor. Programs need

not check for this possibility if a crash upon the first attempt to do I/O onom is accept-

able behavior. When programs are run in subshells whose crashing does no harm to

their environments, as is often the case when they are invoked through pump streams

or bysystemor filter , such behavior may indeed be acceptable.

That possibility notwithstanding, he reasonopen tries to offer the caller a chance

for recovery from errors instead of just crashing the process is that initiating access

to external resources is something that can logically be expected to fail sometimes,

whether because the system has run out of file descriptors or subprocesses available to

the current process, or because a file was not found, many clients will want the chance

to take specific recovery action.

Whatever the reason, the caller ofopen that chooses to check forom will find a

rich variety of possibilities in what

last error

61



Environmentally Friendly I/O 2.13 Normal and Abnormal Endings

can yield after anom return. Any SETL program that wishes to issue a detailed diag-

nostic for internally detectedopenfailures does well to include the value oflast error

in the error message, much as a C program obtains similar information fromstrerror.

Calling

clear error ;

will restorelast error to its default of returning

no error

and the latest value oflast error will always depend on the latest setting of the Unix

global errno variable by a system routine. For example, many of the low-level Unix

(Posix) interface routines described in Section 2.17 will express failure by setting

last error rather than by abending the SETL process. It is a good idea to execute

clear error just before calling any routine that can interact with the external environ-

ment in any way, if one intends to inspectlast error (i.e., compare it tono error ) after

the call.

On the other hand, particularly where networks are involved, either because of ex-

plicit use of sockets or because of networked filesystems, it is possible for practically

any regular I/O operation to fail catastrophically, and one of the main reasons for dele-

gating I/O responsibilities to child processes in the software designs preferred through-

out this dissertation is to limit the damage caused by unpredictable communications

failures—if the child running under a pump stream crashes, the parent simply sees an

end-of-file condition on the pump stream.

62



Environmentally Friendly I/O 2.14 Strings

2.14 Strings

Ultimately, all input and output reduces to the communication of strings. The impor-

tance of string handling in data processing languages was appreciated in both CIMS

SETL [181] and SETL2 [190], which went beyond the already powerful string slicing

operations and introduced a set of built-in procedures inspired by the intrinsic pattern-

matching functions of SNOBOL.

2.14.1 Matching by Regular Expression

I have gone a step further and extended the string slicing operations themselves so

that wherever an integer trimscript is required, a regular expression may be used in-

stead. The regular expression is itself just a string in which certain characters called

“metacharacters” are not meant to be taken literally, but act as patterns. The pattern-

defining sublanguage is very similar to that accepted by the GNUegrep command. The

predefined boolean variable

magic

may be assignedfalse to make all the metacharacters literal instead of special. Be-

causemagic is a global variable that defaults totrue, the SETL programmer should

normally set it back that way after any code sequence that requires it to befalse, so for

convenience there is also

old magic:= set magic (new magic);

63



Environmentally Friendly I/O 2.14 Strings

whereold magicandnew magicare boolean. For example, a piece of code in a sub-

routine should setmagicaccording to its local needs and then restore it:

savedmagic:= set magic (false); -- we need metacharacters turned off
... -- . . . pattern-matching activity . . .

set magic (savedmagic); -- restore prevailing value ofmagic

The string slicing extensions work as follows. Given stringsand regular expression

patternp, the expression

s(p)

refers to the leftmost substring ofs that satisfiesp (andp itself will be “greedy” in

what it matches wherever the Kleene star or other unbounded subpattern occurs). This

expression may be used in store or fetch positions as usual, replacing or producing a

substring accordingly. If there are no occurrences ofp in s, thens(p) has the valueom,

and assigning tos(p) has no effect.

Givens and two regular expression patternsp1 andp2, the expression

s(p1.. p2)

refers to the substring ofs which begins with the leftmost substring satisfyingp1 and

ends with the first substring to the right of that satisfyingp2. For example, ifscontains

the text of a C program, the assignment

s(‘ ///\\\\\\ ���’ .. ‘ \\\\\\ ���/// ’) := ‘ ’;

64



Environmentally Friendly I/O 2.14 Strings

replaces its first C comment (if any) with a blank.

We see here a consequence of the fact that the backslash is the “literal next charac-

ter” indicator both in SETL strings and in the regular expression sublanguage. To match

an actual asterisk, rather than have the asterisk in the pattern interpreted as a “0 or more

occurrences” suffix operator (Kleene star), it is necessary to double the backslash. This

produces a single backslash in the string value corresponding to the raw denotation,

and this backslash in turn protects the asterisk in the regular expression.

Alternatively, of course,magiccould be set tofalseso that

s(‘ /// ���’ .. ‘���/// ’) := ‘ ’;

would have the desired effect.

Although I have found regular expressions for string slicing to be very useful, they

do not provide an easy way to construct replacement strings as expressions in terms of

matched substrings. This virtue is possessed by SNOBOL and by the standard editing

tools in Unix, and is useful enough that I plan to add such a capability to SETL (see

Section 6.4).

Meanwhile, themark , gmark, sub, gsub, andsplit built-in routines for scanning

and modifying strings help to cover much of the need for a more complete pattern-

matching facility:

[[[i, j]]] := mark (s, p); -- i, j := integers such thats(i.. j) = s(p)
[[[[[[i1, j1]]], [[[i2, j2]]], . . .]]] := gmark (s, p); -- all occurrences ofp in s
x := sub (s, p, r); -- x := s(p); s(p) := r; [if no side-effects inp]
x := sub (s, p); -- x := s(p); s(p) := ‘’; [if no side-effects inp]

65



Environmentally Friendly I/O 2.14 Strings

[[[x1, x2, . . .]]] := gsub(s, p, r); -- all (replaced) occurrences ofp in s
[[[x1, x2, . . .]]] := gsub(s, p); -- all (deleted) occurrences ofp in s
t := split (s, p); -- t := tuple ofp-delimited substrings ofs
t := split (s); -- t := split (s, ‘ [ \\\ f\\\ n\\\ r\\\ t\\\ v]+’); [whitespace delim.]

Each pattern argument is denotedp in this synopsis. It may be either a regular ex-

pression as with the string slicing extensions, or an ordered pair[[[p1, p2]]] of regular

expressions, wherep1 andp2 behave, in terms of matching, exactly like thep1 and

p2 in the slicing forms(p1.. p2) just reviewed. As a matter of fact,p1 and/orp2 can

be integers in all these forms, for full orthogonality in expressions likes(p1.. p2) or

mark(s, [[[p1, p2]]]). Gsub returns the tuple of substrings ofs that are replaced byr.

Gmark does not rewrites but returns a tuple of ordered pairs of (integer) indices such

that every pair[[[ik, jk]]] frames a substring ofs that is entirely matched by the patternp,

or more precisely, such thats(ik.. jk)(p) = s(ik.. jk).

More information on these and myriad other intrinsic operations comprising the

SETL “library” can be found on the World Wide Web [19].

2.14.2 Formatting and Extracting Values

The next 3 routines, for formatting numbers in decimal, are named after functions in

Algol 68 [137].

The string-valued expression

whole (i, width)

66



Environmentally Friendly I/O 2.14 Strings

represents the integeri in decimal, with a possible leading minus sign. If the abso-

lute value of the integerwidth is more than the number of characters in this converted

number, then in the manner ofprintf, if width is positive, the number is right-justified

in a field of width characters, and if negative, it is left-justified in a field of –width

characters. Ifi is real, an integer nearest toi takes its place.

For a string that includes a possible decimal point and subsequent digits as well,

fixed (x, width, prec)

takes a real or integerx, awidth that functions exactly as inwhole, and a non-negative

integerprec stating the number of digits to follow the decimal point. Ifprec is zero,

fixed omits the decimal point as well, and in fact acts just likewhole then.

For scientific notation, there is

floating (x, width, prec)

which differs fromfixed only in that the character ‘E’ followed by a sign and at least

2 decimal digits are appended, representing the power of 10 by which the part before

the ‘E’ is understood to be multiplied. That initial segment will have just one digit

before the decimal point (if any). Thewidth specification applies to the entire string.

Integers can also be rendered in explicit-radix form. The call

strad (x, radix)

for integersx andradix, given a value ofradix in the range 2 to 36, produces a string of

the form ‘radix#digits’, where theradix part is in decimal and thedigits part consists

67



Environmentally Friendly I/O 2.14 Strings

of digits in the given radix. The convention is that the letters ‘a’ through ‘z’ are digits

representing the values 11 through 36, respectively. Here are some examples:

strad (10, 10) = ‘10#10’
strad (10, 16) = ‘16#a’
strad (10, 2) = ‘2#1010’
strad (�899, 36) = ‘ --36#oz’

The contents of the strings produced bystrad would be acceptable asinteger denota-

tions if compiled as part of a SETL program, and would also be acceptable to theread,

reada, andreads routines mentioned in Sections 2.3.1 and 2.3.2, as well as as to the

unstr, val, and denotypeoperators described below. In all of these cases, another sharp

sign (‘#’) may optionally be appended to the literal without changing its meaning.

Finally, the programmer can always use the general-purposestr operator to let the

system choose how to format a given number. For integers, this will always be a dec-

imal string, preceded by a minus sign (‘--’) if appropriate.Str also occurred in CIMS

SETL and in SETL2.

As introduced in SETL2, theunstr operator is approximately the inverse ofstr.

It cannot produce an atom (onlynewat can do that), nor a procedure value (only the

routine operator can do that). Also, it is not guaranteed that(1=3) = unstr str (1=3),

because there is no guarantee about how many digitsstr will produce. It is merely

implementation advice that the number of significant digits yielded be close to, but

not exceed, the precision of the machine representation of a SETLreal, which should

normally have at least 50 bits of mantissa.

68



Environmentally Friendly I/O 2.14 Strings

When the programmer wishes to determine whether a given strings consists of a

single valid numeric denotation (with possible leading and/or trailing whitespace), and

obtain the corresponding value if it does,

val s -- this isreal or integer or om

will yield the appropriate value. Note that the following identities hold for any integers

x andwidth, and anyradix in the range 2 to 36:

x = val str x
x = val whole (x, width)
x = val strad (x, radix)
x = unstr strad (x, radix)

By design, an important difference betweenunstr andval is thatval is defined to

returnom when its argumentis a string butdoes notconsist of a numeric denotation,

whereas the behavior ofunstr is unspecified for invalid arguments. The intent is that

SETL implementations raise some kind of exception whenunstr cannot recognize a

SETL denotation in its argument. At the time of this writing, there is no formally

defined exception mechanism for SETL, though see Section 6.5. Meanwhile, checking

implementations are expected to handle this kind of error in some manner helpful to

programmers. For example, when my SETL implementation [19] detects an error at run

time, it highlights a source line, points to a relevant token, and displays a subroutine

traceback.

In order to determine whether a string would be acceptable tounstr,

69



Environmentally Friendly I/O 2.14 Strings

denotypes

is defined astype unstr s if sconsists of a valid SETL value denotation, butom other-

wise. No exceptions!

2.14.3 Printable Strings

Whenstr is confronted with a string argument, it increases the quoting level if neces-

sary by surrounding the string with quote marks and doubling internal ones, but leaves

all “unprintable” characters as they are. (The reason it maynot be necessary to add

quote marks is that the string may have the form of a SETL identifier—an alphabetic

character followed by alphanumeric and underscore characters.Str andunstr are iden-

tity operators on strings with content restricted in exactly this way.)

The expression

pretty s

formats a strings such that all characters are represented as “printable” characters.

Quotes and backslashes are doubled, the “control” characters are represented in C or

SETL denotation form as shown in the following table, all other unprintable characters

are rendered as a backslash followed by octal digits, and the remaining characters, all

printable, are left as they are:

FORM FUNCTION

‘ \\\ a’ audible alarm

70



Environmentally Friendly I/O 2.14 Strings

‘ \\\ b’ backspace
‘ \\\ f’ formfeed
‘ \\\ n’ newline (linefeed)
‘ \\\ r’ carriage return
‘ \\\ t’ horizontal tab
‘ \\\ v’ vertical tab

Thepretty operator also encloses the result string in quotes.

Conversely,

unpretty p

takes a pretty stringp and performs the inverse operation. It is of course liberal enough

even to accept some strings thatpretty would not produce, though it does insist on the

enclosing quotes (single or double).

Another operator which converts a string to another string having all characters

printable is

hex s

which has the inverse

unhex s

so thatunhex hexs= s. Unhex returnsom if its argument fails to consist of an even

number of hexadecimal characters, those being the decimal digits and the letters ‘a’

through ‘f’ in upper or lower case.

Hex is particularly useful for instrumenting low-level code in which special string

encodings are used, such as when a serial-line device has a predefined command proto-

col. The Canon VC-C3 [35] videocamera system to which the control service described

71



Environmentally Friendly I/O 2.14 Strings

in Section 4.1.2 interfaces is a perfect example. Similarly,unhex makes it very easy to

set up a low-level diagnostic tool, to allow the prober to throw arbitrary strings at the

device. In programs such asvc-model.setl, listed in Section A.27,unhex can also be

seen to serve the rather trivial but welcome purpose of facilitating the use of hexadec-

imal string denotations in the program text itself, thereby avoiding the need for ‘\\\ x’

escapes to be repeatedly embedded in string literals—a low-level aid to readability.

2.14.4 Case Conversions and Character Encodings

The expression

to upper s

is the same assexcept that all lowercase characters are converted to their corresponding

uppercase forms, and

to lower s

is the obvious complement. These case conversion operators are useful for canonical-

izing a string such as might occur in an input command to a program, because then

all subsequent tests or map lookups on the converted string can be effectively case-

insensitive.

Following the CIMS version of SETL, the asterisk is overloaded to allow a strings

to be “multiplied” by a non-negative integern to produce the concatenation ofn copies

of s. The arguments can be in either order. For example, a row of 70 dashes can be

specified as(70� ‘ --’) or (‘ --’ � 70).

72



Environmentally Friendly I/O 2.14 Strings

Likewise,lpad(s, n) andrpad(s, n) yield copies ofs padded with blanks as neces-

sary on the left or right, respectively, to make upn characters.

As in CIMS SETL, thechar operator takes an integer that is the internal code of

some character, and returns that character as a string of length 1. Theabsoperator is

overloaded to act aschar’s inverse, and

ichar s

is introduced in SETL as the equivalent ofabsswhens is a string (and it is an error for

snot to be a string).

The up-to-date reader will note that no distinction has been made betweenbytesand

charactersfor SETL strings. In effect, only the “POSIX locale” defined in Unix 98

is accommodated by the current design of SETL, and characters are assumed to oc-

cupy 8 bits. However, the language is not strongly tied to this assumption, and can

be expected to evolve gracefully toward support for “wider” characters and for con-

temporary internationalization and localization standards. Areas of the language for

which compatibility issues will arise (although the new definitions should largely be

upwardly compatible with the existing ones) include thechar and ichar operators of

this section,hexandunhex, escape sequences instring denotations, and direct-access

I/O operations. Which characters are considered “printable”, the collating order among

strings, case conversions, the decimal point symbol, and the format of times and dates

should all ultimately become locale-dependent. If the locale can be changed by a SETL

program during its own execution, which does not seem unreasonable, there will also

73



Environmentally Friendly I/O 2.14 Strings

be dynamic convertibility concerns to be addressed.

2.14.5 Concatenation and a Note on Defaults

String concatenation is a very common operation, particularly when used for building

up output strings. In principle, it is possible to require the SETL programmer to apply

str to every value that is not already a string when building up a string, but in practice,

it is much more convenient for the programmer ifstr is invoked implicitly. This is not

by any means a context in which type mistakes are likely to be disastrous, and given

that many strings are built for the sake of producing error messages, it is actually more

likely that an important diagnostic prepared by the SETL programmer will be missed

due to a gratuitous crash than that a critical type error will go unnoticed and have its

deadly effects propagated far, if there is insistence on explicit coding of astr in front

of every non-string expression in a long concatenation. For example, expressions that

evaluate toom in this situation will show up as ‘���’ in the concatenated string, and this

itself conveys useful information.

It happens that the “+:=” operator is overloaded to supportom as the initial value

of its (writable) left-hand operand when the right-hand operand is aninteger, real,

string, set, ortuple, in which case it acts as if it had been initialized to the appropriate

identity element (0, 0.0, ‘’,fg, or [[[ ]]], respectively). This is helpful in loops, such as

when tallies are being recorded against keys in a map, e.g.:

tally map:= fg;
for x . . . loop

74



Environmentally Friendly I/O 2.15 Field Selection Syntax for Maps

tally map(x) +:= 1;
...

end loop;

Without the identity-element default, the statement “tally map(x) +:= 1;” above would

have to be preceded by “tally map(x) ?:= 0;”, which in practice is a nuisance that is

hard to justify by the need for protection against failure-to-initialize errors. But since

the expressionom + ‘a’ is supposed to be equivalent tostr om + ‘a’ (which has the

value ‘���a’) by the implicit-str rule, the question arises: shouldx +:= ‘a’ for uninitial-

izedx meanx := ‘a’, or x := ‘���a’? It is unusual to want to form a string starting with the

converted value ofom (indeed, the very use of “+:=” in a string-building expression

that is itself meant to be copied somewhere is stylistically questionable), but it is not

at all unusual to want automatic initialization of a string that will be accumulated by

concatenation, so the decision is easily made in favor of the latter interpretation.

2.15 Field Selection Syntax for Maps

Pending the design and implementation of a type system for SETL, I have added the

convenience of records to SETL (without, alas, the security of strong typing) by ex-

tending the member selection (“dot”) notation so that it can be used to address range

elements in maps whose domain elements are strings having the form of SETL identi-

fiers. For any single-valued, string-domained mapf, the identity

f.x= f (‘x’)

75



Environmentally Friendly I/O 2.16 Time

holds. The dot also retains its normal purpose of explicitly resolving member names to

packages. In a case-insensitive stropping3 regime,F.X, F.x, and f.X are also equivalent

to f (‘x’) andF(‘x’) (but not f (‘X’), i.e.F(‘X’)).

This small (and admittedly dubious) extension to the meaning of the infix dot, orig-

inally intended as a stand-in to allow maps to serve easily as records, proves to be

very useful for program-to-program communication. With no preliminary declarations

or difficulties about representing records of various types while they are in transit in

the I/O system, SETL programs can pass data around as maps, where one field may

serve as a discriminant (tag) to indicate which other fields are meaningful. Such flex-

ibility offers more power than discipline, but at least corresponds to familiar practice

in JavaScript [152] and resembles the model of “resources” in the X windowing sys-

tem [121], so it can be argued that the pitfalls as well as the strengths of this approach

are already fairly well known.

2.16 Time

As in CIMS SETL and SETL2, the current date and time are available as the string-

valueddate, or equivalentlydate().

Similarly, the integer-valuedtime in all versions and variants of SETL gives the

3“Stropping” was a term borrowed from barbers by the designers of Algol 68 [137] to describe how
sequences of characters on an input device correspond to the abstract symbols (tokens) of a programming
language. My SETL implementation [19] defaults to a regime similar to the RES (“reserved word”) con-
vention of Algol 68, and is general enough to support several other modes, including one like Algol 68’s
UPPER.

76



Environmentally Friendly I/O 2.16 Time

number of milliseconds of CPU time used so far by the current process and all child

processes that have finished and been waited for by any equivalent ofwait (see Sec-

tion 2.17.2).

New in the present version of SETL are the integer-valued

clock -- trailing “()” optional

which measures the number of milliseconds of “wall-clock” time that have elapsed

since the calling process started, and

tod -- trailing “()” optional

which is the number of milliseconds since the beginning of 1970 (UTC). Also new is

fdate (ms, fmt)

which formats its integer argumentms, presumed to represent a number of milliseconds

since that moment, as a time and date according to the format given by the stringfmt.

The format is optional, and defaults to ‘%a %b %e %H:%M:%S.%s %Z %Y’, where

the per-cent sign “escapes” are as defined for the Unix 98strftime function as applied

to the result of applying itslocaltime function tomsdiv 1000, plus the extension that

‘%s’ expands to the low-order 3 digits offmt in decimal. For example,

fdate (936433255069) = ‘Sat Sep 4 04:20:55.069 EDT 1999’

in the US Eastern time zone. The SETLdate primitive, which formerly produced the

time and date in an implementation-dependent format, is now standardized as meaning

fdate (tod, ‘%c’).

77



Environmentally Friendly I/O 2.17 Low-Level System Interface

2.17 Low-Level System Interface

For most purposes, the high-level SETL model embodied in filters, pump streams, and

so on, with its automatic buffering and process management, will be the most direct and

convenient. Occasionally, however, access to certain of the Unix 98 [154] mechanisms

underlying this model will be desired. The routines described in this section aim to be

a supporting cast of utilities in this spirit, and have names that should be mnemonic to

programmers familiar with Unix.

2.17.1 I/O and File Descriptors

The lowest-level Unix facilities for creating “pipes” and file descriptor aliases directly

are now available in SETL. It should seldom, if ever, be necessary to use these primi-

tives, but an example in Section 2.17.2 shows how these traditional tools could be used

with fork , exec, andwait to implement piping from a child process in the manner of a

SETL ‘pipe--from’ stream or a C stream obtained frompopen in ‘ r’ mode.

A Unix-level pipe is created with

[[[rfd, wfd]]] := pipe(); -- trailing “()” optional but recommended

which leaves a readable file descriptor inrfd and a writable file descriptor inwfd. These

file descriptors are not open at the SETL level, but are open at the operating system

level.

It is still easy to open a SETL stream over such a file descriptor, as shown in Sec-

tion 2.11, and then all the appropriate SETL operations become available on it. Also,

78



Environmentally Friendly I/O 2.17 Low-Level System Interface

closecan always be called on any file descriptor, and will close all levels that are open.

See Section 2.13 for more information onclose.

To create a new file descriptor that refers to the same kernel object as an existing

file descriptor, one of the following two calls may be used:

fd2 := dup ( fd1); -- system picksfd2

dup2 ( fd1, fd2); -- we demandfd2

In the first case,dup, the system chooses the lowest-numbered free file descriptor. In

the second case,dup2, the caller chooses the desired file descriptorfd2, and the system

executescloseon fd2 if necessary before reopening it as an alias offd1.

For example, if a process wished to “redirect” the input from an inherited file de-

scriptor fd1 to its ownstdin channel for convenience, it could execute

dup2 ( fd1, stdin);

There is in fact a precise correspondence betweendup2 and the standard Unix 98 shell

syntax for file descriptor redirection. For example,dup2 (6, 7) is equivalent to the

shell’s “7<<<&6” if file descriptor 6 is read-only, or “7>>>&6” if it is write-only.

Very occasionally, in contexts where such low-level operations are already being

used, it is useful to bypass the SETL stream buffering and make direct calls to the

following interfaces to the fundamentalread andwrite Unix system primitives:

s := sys read ( fd, n);
n := sys write ( fd, s);

79



Environmentally Friendly I/O 2.17 Low-Level System Interface

Thesys read procedure returns a string of up ton characters.Sys write tries to writes

to fd and returns an integer indicating how many characters ofs it wrote. The call to

sys write should therefore normally be wrapped something like this:

procedure my write ( fd, s);
while #s> 0 loop
n := sys write ( fd, s);
s(1.. n) := ‘’;

end loop;
end my write;

2.17.2 Processes

The fundamental process creation primitive in SETL isfork , which returns a new pro-

cess id in the parent process and 0 in the child. The child is otherwise essentially a clone

of the parent, and inherits its open file descriptors and signal and timer dispositions:

processid := fork (); -- trailing “()” connotes action

See the vendor-specificfork Unix manual pages for more details. A feature of allfork

implementations now in popular use is that they take advantage of the page modifi-

cation flags supported by virtual memory hardware in order to defer actually copying

pages of cloned data space until one process or another writes into them.

If there are insufficient resources available for the spawning of a child process,fork

returnsom.

Direct use offork is rarely necessary, because one ofsystem, filter , pump, or

an I/O mode that starts a child process (see Sections 2.2.2 and 2.2.3) will provide a

80



Environmentally Friendly I/O 2.17 Low-Level System Interface

more convenient fit to most data processing needs. Still, it is helpful to have some

appreciation of the Unix process model upon which the SETL model is built.

If a process which callsfork is still active when the child completes, it should clear

the system’s record of the child’s process id and exit status by callingwait:

id := wait (block); -- block is boolean

If the flag block is false, wait will return immediately with either the process id of a

child process that has exited, or 0 if none has yet. Ifblock is true (the default),wait

earns its name by waiting until a child process does exit, and then returns its process id.

An important side-effect of await call that succeeds in “reaping” a process id in this

way is that the record of the child process is cleared from the kernel’s process table.

The high-level SETL operations that invoke child processes all effectively callwait

at the appropriate time, namely whencloseis called on a pipe or pump stream (normally

by the SETL programmer, but otherwise upon program exit), or during the last stage of

asystemor filter call.

After a successfulwait, implicit or explicit, the exit status of the child process is

available as the integer-valued

status

which is 0 if no child has yet exited. Note that a SETL program can exit with a partic-

ular status using the optional integer argument of thestopstatement, e.g.:

stop12; -- a multiple of 4 for IBM 360 nostalgia :-)

81



Environmentally Friendly I/O 2.17 Low-Level System Interface

In the Unix realm, one of the first things a child process that is working at the

level of fork will usually do, after some file descriptor rearrangement usingdup2, is to

replace its entire memory image with a new program, usingexec:

exec(pathname, argv, envt);

Theenvtparameter is optional, and if it is absent, theargv parameter is also optional.

Thepathnameis a string, and the optional parameters are tuples of strings if supplied.

By default,argvwill be taken to be[pathname].

Execdoes not return, but constructs a call to the Unix routineexecve if envtwas

supplied, orexecv if it was not. See the manual pages for those routines for more infor-

mation on how the pathname is used to find the executable file, and how the argument

lists (argv andenvt in SETL, mapped in the obvious way to null-terminated arrays of

NUL-terminated C strings) are seen by the program when it is newly launched.

Here is a sketch of howfork , pipe, dup2, exec,wait, andclosecan be used in

classical Unix style to provide a near-equivalent of the SETL ‘pipe--from’ input mode:

[[[rfd, wfd]]] := pipe(); -- create pipe
processid := fork ();
if processid = 0 then
-- Child, redirectsstdout into pipe
close(rfd); -- close readable side of pipe
if wfd 6= stdout then
dup2 (wfd, stdout); -- redirectstdout
close(wfd); -- now retire this alias

end if;
-- Stringnameidentifies an executable file:
exec(name, args . . .); -- replace process image
assert false; -- execshould not return

82



Environmentally Friendly I/O 2.18 Summary

end if;
-- Parent or only process continues here
close(wfd); -- close writable side of pipe
if processid 6= om then

... -- read from child viarfd, until EOF

wait; -- clear child record from kernel
else
-- No child was spawned
printa (stderr, ‘ fork() failed’);

end if;
close(rfd); -- done with readable side of pipe

See also thepid (process id),pexists (process existence), andkill (send signal)

operations described in Section 2.8.

2.18 Summary

This chapter has covered the main needs one encounters in typical data processing, and

reviewed several new features which help SETL participate meaningfully in a wide va-

riety of process arrangements. Next, we turn our attention to more specifically Internet-

related matters.

83



Chapter 3

Internet Sockets

Life on the Internet revolves around processes calledservers. Accordingly, this chapter

introduces the facilities now built into SETL for creating, communicating with, and

governing servers. SETL proves to be well suited for expressing servers and their

correspondingclients, and indeed the main goal of this dissertation is to show how

convenient it has become for SETL servers to manage fluctuating sets of clients in data

processing over the Internet.

The client-server conceptual model has been a huge success, to the point where

for any pair of processes communicating over the Internet, it is helpful to label one as

client and the other as server. Of course, we are speaking of relationships here, so a

server can play client to other servers. In SETL, these relative roles are reflected in the

names of theopen I/O modes that create Internet sockets.

The usual job of a server is to wait for client requests and respond to them in some

84



Internet Sockets 3.1 Clients and Servers

way. In the spirit of using processes as the fundamental modules of a data processing

system, a server will typically define an interface consisting of some set of commands

(or methods, in object-oriented terms) that is independent of the host operating system,

hardware, and source programming language.

A server is in an ideal position to synchronize access to a resource, and will often

be a long-lived process that consumes no CPU time and little memory while passively

waiting for clients.

In order to remain available and responsive to client requests at all times, and to

remain immune to client-induced crashes, a server will usually deal with each client

through a pump stream (see Section 2.2.3). If the child process associated with that

stream goes down due to a network failure or unhandled data exception, the server then

merely sees an end-of-file condition on the stream.

3.1 Clients and Servers

Clients identify servers through a ‘host:port’ Internet naming convention, where the

host part can be a DNS-recognized name or an IP address (see Section 3.3.2). Servers

only bind theport part explicitly, since the identity of the host providing the service is

implicit. If the server host is multi-homed (i.e., has more than one IP address), clients

can reach that service through any address to which they have a route. The I/O modes

specified toopen for the creation of client and server sockets are distinct, as shown in

the following list:

85



Internet Sockets 3.1 Clients and Servers

MODE AND SYNONYMS MEANING

‘socket’, ‘ client--socket’, TCP client socket
‘ tcp--client--socket’

‘server--socket’, ‘ tcp--server--socket’ TCP server socket

‘udp--client--socket’ UDP client socket

‘udp--server--socket’ UDP server socket

This list of network-oriented I/O modes completes the list begun in Sections 2.2.2

and 2.3. Again, the mode parameter toopen is not case-sensitive.

3.1.1 A Client

To open a client socket connected to a TCP server on an Internet host at a particular

port, specified as a stringhost and port in which the host name is followed by a colon

and then the port number, the SETL program executes

fd := open(host and port, ‘socket’); -- or ‘client--socket’

For example, here is a complete SETL program to open a TCP client connection to

port 13 (the “daytime” service) of hostgalt.cs.nyu.edu, read a line from the resulting

stream, and print it:

print (getline open(‘galt.cs.nyu.edu:13’, ‘ socket’));

This should produce that host’s impression of the current weekday, date, and time, e.g.,

86



Internet Sockets 3.1 Clients and Servers

Thu Jul 16 21:31:52 1998

For such “well known” port numbers as 13, which are generally listed with their famil-

iar names in the file/etc/services on Unix hosts, the port number can be replaced by a

service name such asdaytime, allowing the above program to be written as

print (getline open(‘galt.cs.nyu.edu:daytime’, ‘ socket’));

Running either of the above programs is approximately equivalent to issuing the fol-

lowing command on Unix or any system that has atelnet command:

telnet galt.cs.nyu.edu 13

As we shall see,telnet can be very useful for testing servers.

The client above is a little unusual in that the file descriptor returned byopen is

not even saved anywhere, since it is only used once (bygetline). The following is

more typical, and illustrates error checking comparable to what might be done after

attempting to open a file:

fd := open(‘galt.cs.nyu.edu:13’, ‘ client--socket’);
if fd 6= om then
print (getline fd);
close( fd); -- redundant (automatic on exit)

else
print (command name+ ‘ : ’, last error );

end if;

This program should print either the response from the server or something like

<<<program-name>>>: Connection refused

87



Internet Sockets 3.1 Clients and Servers

where<<<program-name>>> is the name of the SETL run-time interpreter or the name of

the file containing the above SETL “script” if it is prefaced by a “#!” line and made

executable as described in Section 2.1.

3.1.2 A Server

Whereas a TCP client simply has to request a bidirectional stream connection and wait

for it to be established, a TCP server has to be able to perform two quite distinct steps

in providing a service. First, it must be able tolisten for connection requests from

anywhere, and second, it must be able toacceptsuch requests, establishing a distinct

bidirectional stream connection for each accepted client.

As in the Unix 98 C interface, and more recently the Java API, one file descriptor

is used for listening, and another is used for each client-specific connection produced

by theacceptroutine discussed below.

The listening file descriptor is the one created byopenwhen the ‘server--socket’ I/O

mode is selected. The first argument is a string consisting of decimal digits identifying

a port number on which to listen:

server fd := open(port number, ‘server--socket’); -- “listen”

If the result of this call is notom, a listening TCP port has been created. To use the

file descriptor associated with that listening port, the following call is used to wait for a

new connection request from a client. When one arrives, this routine will unblock and

yield a new bidirectional socket stream:

88



Internet Sockets 3.1 Clients and Servers

fd := accept(server fd); -- accept client connection

If another connection request arrives in the interval when the server is busy after a

successfulacceptand before it has managed to callacceptagain, that request is queued.

It will be immediately satisfied whenaccepteventually is called. Up to five connection

requests will be so queued; beyond that they will be refused. Most servers are structured

so as to spend very little time dealing directly with clients, thus keeping this queue

short. Often, this means spawning a child process to handle most of the interaction.

For our first example of a server, however, let us consider a “sequential” server

which innocently trusts clients to read what it sends to them immediately rather than

delaying and thereby blocking service to other potential clients. With appropriate au-

thentication, this kind of simple arrangement can be useful for resource access serial-

ization. Here, the service is just supposed to mimic the “daytime” service of which the

opening example of Section 3.1.1 was a client, except that this one listens on port 50013

rather than port 13:

server fd := open(‘50013’, ‘ server--socket’); -- listen
loop -- cycle indefinitely

fd := accept(server fd); -- accept client connection
printa ( fd, date); -- send current date and time to client
close( fd); -- close client connection

end loop;

There are two file descriptors involved here:server fd is the one on whichaccept

waits for client connections, andfd represents the TCP stream created byacceptwhen

a client does connect. It is not possible to send or receive data onserver fd: its one

89



Internet Sockets 3.1 Clients and Servers

and only purpose is to listen for new client connections throughaccept. Conversely,

acceptdoes not create a listening server socket—that isopen’s job—the only purpose

of acceptis to create a new socket representing the server side of an individual connec-

tion after a client requests one, and return a file descriptor for the bidirectional stream

embodied in the socket.

Once a TCP connection is established between a client and a server, the relationship

between the two parties is essentially symmetric, and in the standard terminology, each

one is called thepeerof the other. From the SETL programmer’s point of view, the

symmetry is in fact complete enough that when a child process inherits from a server

process a socket file descriptor that is connected to a client, it can open a SETL stream

over it using theopenmode ‘socket’ (even though this nominally refers to a TCPclient

socket stream) instead of the more generic mode ‘rw’ as suggested in Section 2.11. In

doing so, the child process exchanges some generality for the ability to make socket-

specific enquiries on the stream such as those listed in Section 3.3.2.

3.1.3 Choosing the Port Number

The above server should behave similarly to the standard one on port 13 of most Unix

and VMS systems. Port numbers in the range 1–1023, however, can only be served by

processes with superuser privileges in Unix, and are what theInternet Assigned Num-

bers Authority(IANA) [116] calls thewell-knownports. The best known of these will

always be listed in the file/etc/services on Unix systems, together with their associated

90



Internet Sockets 3.1 Clients and Servers

names such asdaytime for port 13. Ports 1024 through 49151 are the IANAregis-

teredports, which simply means that the IANA registers and maintains a public list of

them atftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers. Finally, ports 49152

through 65565 (the maximum possible port number) are called thedynamic and/or pri-

vateports by the IANA. These have no preassigned association, and are conventionally

also calledephemeralport numbers.

Historically, many Unix systems, particularly those with a BSD heritage, have allo-

cated port numbers dynamically from the range 1024–5000, so these will often also

be included in the “ephemeral” ports on a Unix system. Solaris systems allocate

ephemeral ports from the range 32768–65535. Indeed, there is no guarantee in gen-

eral that a port number will be available at the time it is requested by a would-be server

process, since the port may already be in use. This is true even for IANA registered

port numbers.

New server software should strive to avoid depending on a specific port number,

especially if it is user-level software that is not ineluctably tied to a well-known port.

Fortunately, this is easily done by requesting port 0, which instructs the system to

choose an ephemeral port number. The assigned number can be found out using the

port operator. For example, the value of

port server fd

immediately after a successfulopen in the server of Section 3.1.2 would be the integer

50013 because ‘50013’ was the first argument ofopen. The following sequence of

91



Internet Sockets 3.1 Clients and Servers

SETL statements will print a number in the range 1024–4999 on a Berkeley-derived

TCP implementation, or in the range 32768–65535 under Solaris:

server fd := open(‘0’, ‘ server--socket’);
print (port server fd);

A client socket implicitly uses an ephemeral port number for its own end of a connec-

tion. This also can be interrogated with theport operator, though there is rarely any

reason to do so. By contrast, a server may sometimes wish to know the ephemeral

port number associated with a client on the client’s host, and thepeer port operator

described in Section 3.3.2 allows it to do so.

The primordial question naturally arises as to how a client can know what port a

desired service is currently being offered on, if the port number was arbitrarily chosen

only after the server program began execution. One way of handling this is to have the

server make the port number known to a Web server (httpd daemon), and have clients

initially contact the Web server to find out the port number of the desired service—Web

servers listen on the well-known port 80 or are configured to use some other fixed port

number. This two-stage technique is used in the case study of Chapter 4, where a Web

document template is instantiated with dynamically assigned server port numbers and

other information in response to initial client requests. In this chapter, however, for

the sake of simplicity in server examples intended to illustrate other points, fixed port

numbers are used.

92



Internet Sockets 3.2 Concurrent Servers

3.2 Concurrent Servers

Except when the purpose of a server is to serialize access to some resource, it should

be available to clients at all times. For example, a public Web server ought to be able

to manage several connections simultaneously, and hand off most of the responsibility

for clients to some equivalent of separate threads or processes so as to be able to accept

new clients quickly.

In this section, a running example called theline-length serveris introduced. Its

actual function is quite trivial, in order not to obscure the issues confronting a server

involved in extended interactions with multiple clients. For each line of text it reads

from a client, the line-length server simply replies with a number indicating how many

characters long that input line was. The number is itself formatted as a run of decimal

digit characters on a single line.

3.2.1 Näıve Server

The first version of the line-length server does not even check for errors:

-- Line-length server, version 1 (na¨ıve)

server fd := open(‘54001’, ‘ server--socket’); -- listen
loop -- cycle indefinitely

fd := accept(server fd); -- accept client connection
if fork () = 0 then
-- Child process; deal with client throughfd
while (line := getline fd) 6= om loop
printa ( fd, #line); -- number of chars inline

end loop;

93



Internet Sockets 3.2 Concurrent Servers

stop; -- normal exit from child process
end if;
-- Parent continues here
close( fd); -- child copy of fd stays open as long as necessary

end loop;

This server will indeed serve any number of clients simultaneously, subject only to

system resource availability, but it has some problems.

First, there is a subtle consequence of the fact that the file descriptor ostensibly

returned byacceptis not checked for beingom. On rare occasions,acceptwill unblock

because of an incoming connection request, and then, due to any number of network

hazards, fail to establish the TCP connection. The child process will crash on its first

attempt to useom as a file descriptor, which is unfortunate but does not affect the

parent. However, the parent itself will crash when it callscloseon om, rendering

the whole service unavailable. We will solve this problem simply by conditioning

everything after theacceptcall on fd not beingom.

The second problem with this first version of the line-length server is that on Unix

systems, where child processes can return a status code to their parents, the operating

system is required to keep a record of the status code until the parent asks for it using

wait or one of its variants. If we start the server as shown, have some clients use

it and close their connections, and then askps to tell us about our processes, it will

list all child processes that have finished interacting with clients (and hence exited) as

zombies, the technical term for processes that have terminated but not yet had their

status codes “reaped” bywait. Eventually, the system will not be able to allocate any

94



Internet Sockets 3.2 Concurrent Servers

more child processes,fork will start consistently returningom, and all further clients

will be dropped immediately after they have been accepted. We will see in Section 3.2.3

how to be informed of when to callwait, the SETL reflection ofwait that was described

in Section 2.17.2, in order to clear zombies from the process table (which is of finite

size).

The problem underlying the need for this compulsory housekeeping of callingwait

is that fork itself is an unnecessarily low-level function.Fork was listed among the

Posix interface routines in Section 2.17.2, and is really intended for system-level, not

application-level work. There is almost always a better way of starting child processes

in SETL using higher-level facilities such assystem, filter , or a pump stream as previ-

ously described.

3.2.2 Shell-Aided Server

For example, we can fix the above problems by checkingfd and usingsystemto start

child processes in the “background”:

-- Line-length server, version 2 (shelly)

server fd := open(‘54002’, ‘ server--socket’); -- listen
loop -- cycle indefinitely

fd := accept(server fd); -- accept client connection
if fd 6= om then
-- Convertfd to string, form command with it, run in background
system(‘setl lengths.setl ---- ’ + str fd + ‘ &’);
close( fd); -- this has been inherited by the background task

end if;
end loop;

95



Internet Sockets 3.2 Concurrent Servers

The programlengths.setl that is run in the background for each client is as follows:

-- “ lengths.setl”

-- Convert command-line parameter to integer, open r///w stream over it
fd := open(val command line(1), ‘rw’);
while (line := getline fd) 6= om loop
printa ( fd, #line); -- line length

end loop;

The file descriptor is inherited by this child program, and identified on the command

line that starts the child. In the child, the string token is converted usingval, and the

resulting integer is opened as a bidirectional SETL stream using the ‘rw’ mode. The

trailing ampersand on the command invocation in the server is standard shell syntax

to indicate that the shell should run the command in the background, i.e., as an in-

dependent, concurrent process that does not automatically receive keyboard-generated

signals even if its (foreground) parent does.

Becausesystemuses the shell to run commands, the executing instances of the

child program in the above example are not direct children of the server, but rather of

the shell, which exits (returns to the caller ofsystem) immediately after launching the

background process. In Unix, such “orphaned” processes automatically become chil-

dren of the permanently residentinit process, which then also takes over responsibility

for reaping their status codes and thereby clearing them from the operating system’s

process table when they terminate.

96



Internet Sockets 3.2 Concurrent Servers

3.2.3 Shell-Independent Server

If we wanted to avoid the use of the shell, perhaps on the grounds of a weak perfor-

mance argument, syntactic allergy, or dependency paranoia, and happened to be famil-

iar with the Posix API, we could code the line-length server in much the same way as

it would be done in C or Perl, in contempt of the high-level approach. The following

version does just that, and adds logging onstderr as a feature:

-- Line-length server, version 3 (posixy)

constserver port = ‘54003’;

server fd := open(server port, ‘server--socket’); -- listen
if server fd = om then
-- Cannot get server port
printa (stderr, ‘Port’, server port, ‘--’, last error );
stop1; -- exit with status code = 1

end if;

-- Arrange to receive CHLD (child exit) signals
sigchld fd := open(‘CHLD’, ‘ signal’);

loop -- cycle indefinitely

-- Wait for listener and///or signal input
[[[ready]]] := select([[[fserver fd, sigchld fdg]]]);

if server fd in readythen -- client wants to connect
fd := accept(server fd); -- accept connection
if fd 6= om then -- got it
child pid := fork ();
if child pid = 0 then -- child process
-- Deal with client throughfd
while (line := getline fd) 6= om loop
printa ( fd, #line); -- line length

97



Internet Sockets 3.2 Concurrent Servers

end loop;
stop; -- exit with status code = 0

end if;
-- Parent or only process continues here
close( fd); -- child usesfd
printa (stderr, child pid, ‘started at’, date);

end if;
end if;

if sigchld fd in readythen -- a child process has exited
line := getlinesigchld fd; -- take the signal
child pid := wait(); -- get child process id and exit status
printa (stderr, child pid, ‘rc =’, status, ‘at’, date);

end if;

end loop;

Here we are also checkingserver fd for om. This was not necessary in previous ver-

sions of the server, because the server would have crashed in an immediate and obvious

way when theom value was passed toaccept. Here, however, theom would enter

silently into the set passed toselect(the I/O event-waiting routine introduced in Sec-

tion 2.5), and the program would simply sleep indefinitely, waiting for a CHLD signal

through the remaining singleton set containing justsigchld fd.

3.2.4 Pump-Aided Server

If more elaborate communication between parent and child were desired, such as a

reporting of the number of lines and characters served, the hardy Posix API enthusiast

might even go so far as to code the appropriatepipe, dup2, andclosecalls. But it is

much easier to let thepump primitive take care of all such low-level housekeeping.

98



Internet Sockets 3.2 Concurrent Servers

In the following version of the line-length server, a set is used to keep track of all the

pump file descriptors. There is no need to catch CHLD signals any more, because child

termination is reflected as an end-of-file condition on the child’s pump stream, and the

compulsorywait is implicit in theclosethen applied to that stream’s file descriptor:

-- Line-length server, version 4 (pumpy)

constserver port = ‘54004’;

server fd := open(server port, ‘server--socket’); -- listen
if server fd = om then
-- Cannot get server port
printa (stderr, ‘Port’, server port, ‘--’, last error );
stop1; -- exit with status code = 1

end if;

pumps:= fg; -- pump stream file descriptors

loop -- cycle indefinitely

-- Wait for listener and///or pump stream input
[[[ready]]] := select([[[fserver fdg + pumps]]]);

if server fd in readythen -- client wants to connect
fd := accept(server fd); -- accept connection
if fd 6= om then -- got it
pump fd := pump();
if pump fd = �1 then -- child process
-- Deal with client throughfd
dup2 (stdout, stderr); -- like shell 2>>>&1 redirection
lines:= 0;
chars:= 0;
while (line := getline fd) 6= om loop
printa ( fd, #line); -- line length
lines+:= 1;
chars+:= #line;

99



Internet Sockets 3.2 Concurrent Servers

end loop;
printa (stderr, ‘ lines =’, lines, ‘chars =’, chars);
stop; -- exit with status code 0

end if;

-- Parent or only process continues here
close( fd); -- child (if any) usesfd
if pump fd 6= om then -- child was created
printa (stderr, pid (pump fd), ‘started at’, date);
pumpswith := pump fd; -- includepump fd in pumps

else -- no child was created
printa (stderr, ‘pump() failed at’, date);

end if;
end if;

end if;

for pump fd in ready� pumpsloop -- for each child with output
child pid := pid (pump fd); -- process id of child
child output:= getfilepump fd; -- child’s entire output
close(pump fd); -- close the pump stream and clear the zombie
printa (stderr, child pid, ‘ :’, pretty child output,

‘ rc =’, status, ‘at’, date);
pumpsless:= pump fd; -- removepump fd from pumps

end loop;

end loop;

The purpose ofpretty here is to ensure that the child’s output is a legible part of the

final printa statement about that child. For normal output, this will just be the report of

lines and characters, as a quoted string. If the child crashes, as could happen if the client

closes the connection without reading the reply to the last line it sends the server, this

“pretty” string will contain any diagnostic output that might appear on eitherstdout or,

because of thedup2 call (which creates aliases as described in Section 2.17.1),stderr.

100



Internet Sockets 3.3 Defensive Servers

3.3 Defensive Servers

The server in Section 3.2.4 protects itself quite well against careless or malicious clients

by handing them off to a child process immediately after they are accepted, but does

not guard against the buildup of clients that somehow never get around to closing their

connections. An example of a service which does time out in this way after 15 minutes

of idle client time is FTP. If it did not do this, a popular FTP server would soon swamp

its own host with idle TCP connections to its command port, since users naturally tend

to leave such tedious housekeeping details as closing connections to the software rather

than disconnecting explicitly.

3.3.1 Time-Monitoring Server

For a concurrent line-length server, there is not only the TCP connection but also the

child process that consumes space on the server’s host. What we want to do, if there is

no client activity for, say, 15 minutes, is drop the client, forcibly if necessary.

In the following version of the line-length server, like the shell-aided server of Sec-

tion 3.2.2, the overall parent process does nothing more than instantiate some external

program for each new client, using the shell for convenience:

-- Line-length server, version 5 (impatient)

server fd := open(‘54005’, ‘ server--socket’); -- listen
loop -- cycle indefinitely
if ( fd := accept(server fd)) 6= om then -- new client
-- Form command usingfd converted to string, run in background:

101



Internet Sockets 3.3 Defensive Servers

system(‘setl impatient.setl ---- ’ + str fd + ‘ &’);
close( fd); -- this has been inherited by the child

end if;
end loop;

Here, the programimpatient.setl replaces the programlengths.setl of Section 3.2.2, but

as we shall now see, prevents clients from “hanging” it indefinitely. If clients could be

trusted to send and receive entire lines, it would be a simple matter of usingselectwith

a timeout argument of 15 minutes, like this:

-- “ impatient.setl” (too-trusting version)

fd := open(val command line(1), ‘rw’); -- open inherited fd asfd
loop -- cycle until EOF onfd, or timeout
[[[ready]]] := select([[[f fdg]]], 15� 60� 1000); -- 15-minute limit
if fd in readythen -- fd input or EOF
if (line := getline fd) 6= om then
printa ( fd, #line); -- send length of input line

else
stop; -- exit on client EOF

end if;
else -- timeout (nothing fromfd in 15 minutes)
stop; -- exit on client timeout

end if;
end loop;

But a devious client could send part of a line, and then thegetline call would block

indefinitely.

The solution to this problem, shown below, hasimpatient.setl fork itself into (1) a

worker process which deals with the client, and (2) a monitor process which kills the

first process if 15 minutes of continuous client inactivity occurs. The way this works

102



Internet Sockets 3.3 Defensive Servers

is that the worker process sends the monitor process an empty line after each cycle of

interaction with the client. If the monitor does not receive such a line within 15 minutes

initially or after the previous cycle, it sends the worker a termination signal:

-- “ impatient.setl” (highly cautious version)

if (pump fd := pump()) = �1 then
-- Child (worker), deals with inherited client stream
fd := open(val command line(1), ‘rw’); -- inherited stream
while (line := getline fd) 6= om loop
printa ( fd, #line); -- send line length to client
print ; flush(stdout); -- make monitoring parent happy

end loop;
stop; -- all done

elseifpump fd 6= om then
-- Parent (monitor) continues here
loop -- cycle until EOF onpump fd or timeout
[[[ready]]] := select([[[fpump fdg]]], 15� 60� 1000);
if pump fd in readythen
if getline pump fd = om then
stop; -- child exited normally, and so do we

end if;
else -- timeout (nothing frompump fd in 15 minutes)
kill (pid (pump fd)); -- send TERM signal to child
stop; -- presume child exited, and do likewise

end if;
end loop;

else
-- No child was created
printa (stderr, ‘pump() failed, dropping client’);

end if;

If the monitoring parent process here had responsibilities other than closingpump fd,

103



Internet Sockets 3.3 Defensive Servers

the stop statements would becomequit loop statements, andclosewould be called

explicitly on the pump file descriptor. But to avoid clutter, the closing is left to be

done automatically in this version, and the logging of information (cf. the server in

Section 3.2.4) is omitted.

3.3.2 Identity-Sensitive Server

For security reasons, it is often important to know the identity of clients, so the follow-

ing primitives have been introduced into SETL:

name := peer name fd;
address:= peer addressfd;
portnum:= peer port fd;

Both nameandaddressare returned as strings; the only difference between them is

thataddressis the customary external representation of an IP address (4 decimal fields

in the range 0–255, beginning with the high-order part of the address, and having the

fields separated by dots), andnameis an Internet primary host name if one can be

found for the peer connected tofd, otherwiseom. Portnumis the integer-valued port

number of the peer connected tofd. Although the argument in all three of these cases

is shown asfd to suggest an integer-valued file descriptor, this can as usual be the

argument originally passed toopen if that is known to the current process. These

functions are primarily intended for servers to obtain information about clients, but are

also available for client sockets, where they return information about servers. In the

case ofpeer port , of course, this is merely the number that was originally after the

104



Internet Sockets 3.3 Defensive Servers

colon in the original argument toopen, whereas whenpeer port is used by a server

to inquire about a client, the ephemeral port number it returns can be a useful way to

distinguish among multiple clients from a single host.

The primary name and IP address of the host on which the current process is running

can be obtained through the following string-valued nullary primitives:

name := hostname;
address:= hostaddr;

Finally, since a single host can have more than one name and/or IP address, the

following primitives return sets of strings:

names := ip names(nameor address);
addresses:= ip addresses(nameor address);

The nameor addressargument to both of these is optional, and is understood to be

that of the local host if omitted.

Just as a single host name can map to multiple IP addresses when the host has

multiple network interfaces, a single IP address can almost always be reached by both

a “local” name and a “fully qualified” name, and often also some further aliases. For

example, consider this program:

print (ip names(‘birch’));
print (ip addresses(‘birch’));
print (ip names(‘128.180.98.153’));
print (ip names(‘genie’));
print (ip addresses(‘genie’));

105



Internet Sockets 3.3 Defensive Servers

It produces the following output when executed on hostbirch:

fbirch ‘birch.eecs.lehigh.edu’ ‘www-robotics.eecs.lehigh.edu’g
f‘128.180.98.153’g
fbirch ‘birch.eecs.lehigh.edu’ ‘www-robotics.eecs.lehigh.edu’g
f‘genie.eecs.lehigh.edu’g
f‘128.180.5.9’ ‘128.180.14.9’ ‘128.180.98.9’ ‘128.180.98.73’

‘128.180.98.137’g

The association between Internet host names and IP addresses is maintained by

theDomain Name System(DNS) [116]. SETL currently supports only the familiarIP

version 4(IPv4) and not the emergingIP version 6(IPv6) forms of host names and ad-

dresses [194]. The DNS service is typically provided by a combination of information

local to the host on which a particular request is made and knowledge maintained by

nameservers. This is why the output of the above program whenip nameswas applied

to ‘birch’ was more extensive than when it was applied to ‘genie’, though the opposite

was true for the application ofip addressesbecause of the multiple network interfaces

on ‘genie’.

Without modifying impatient.setl, we can now implement a “blacklist” of clients

that are to be denied service by the line-length server of Section 3.3.1. This, our sixth

and final version of the line-length server, also shows how the HUP signal is conven-

tionally interpreted by servers as a command to re-read configuration data. Here, it

causes the server to re-read the fileblacklist:

-- Line-length server, version 6 (prejudiced)

server fd := open(‘54006’, ‘ server--socket’); -- listen

106



Internet Sockets 3.4 UDP Sockets

assertserver fd 6= om; -- or we crash

hup fd := open(‘HUP’, ‘ signal’); -- catch SIGHUPs

nasty:= get blacklist(); -- read set of names from database

loop -- cycle indefinitely

-- Await connection requests and HUP signals
[[[ready]]] := select([[[fserver fd, hup fdg]]]);

if server fd in readyand
( fd := accept(server fd)) 6= om then
-- If client is not blacklisted, spawn background command
if fpeer name fd, peer addressfdg � nasty= fg then
system(‘setl impatient.setl ---- ’ + str fd + ‘ &’);

end if;
close( fd);

end if;

if hup fd in readythen -- HUP caught
dummy:= getlinehup fd; -- receive the signal
nasty:= get blacklist(); -- re-read the set of names

end if;

end loop;

proc get blacklist(); -- read names of naughty clients from file
return fid : while (id := getline ‘blacklist’) 6= omg;

end proc;

3.4 UDP Sockets

SETL provides support for UDP (the User Datagram Protocol). Although this is an

“unreliable” protocol in that it does not include software mechanisms for retrying on

107



Internet Sockets 3.4 UDP Sockets

transmission failures or data corruption (unlike TCP), and has restrictions on message

length (a little under 65536 bytes), it is needed for applications that use broadcasting

or multicasting, and it underlies such important applications as NFS (the Network File

System), DNS (the Domain Name System), SNMP (the Simple Network Management

Protocol), and various others noted by Stevens [194]. It is also likely to continue to

figure prominently in some modern performance-intensive roles such as multimedia.

Strictly speaking, UDP is a “connectionless” protocol—a program can use a single

UDP socket to communicate with more than one host and port number—but it is con-

venient for most UDP client programs to maintain the fiction that there is a connection,

by keeping a local record of each server host and port number.

This is modeled in SETL by distinguishing between client and server UDP sockets,

both in the way the first argument toopen is specified and in the operations that are

subsequently available on the resulting file descriptor.

To be a UDP client, a program makes a call very similar to what it uses when it asks

to be a TCP client:

fd := open(host and port, ‘udp--client--socket’);

The host name and port number in the string form of the first argument here are sepa-

rated by a colon, just as for TCP. UDP port numbers are entirely independent of TCP

port numbers, though the IANA tries to register the same port number for both UDP

and TCP when a given service is offered through both protocols. An integer repre-

senting an already open UDP client file descriptor is permitted as an alternative to the

108



Internet Sockets 3.4 UDP Sockets

host and port argument, as usual. A successful UDPopenmakes available the opera-

tions

send( fd, datagram);

wheredatagramis simply a string, restricted in length as noted above, and

datagram:= recv fd;

which receives a string intodatagram. Sendandrecv are named after the Posixsend

andrecv functions.

The following example program is the UDP analogue of the TCP client with which

we began Section 3.1.1:

fd := open(‘galt.cs.nyu.edu:13’, ‘ UDP--client--socket’);
send( fd, ‘’ ); -- send an empty datagram
print (recv fd); -- receive and print a datagram

In the TCP case, opening the connection sufficed to prompt the server to return the

desired information (the day of the week and so on), but when a UDP “connection” is

opened, nothing is actually sent to the server. Even a null string will be wrapped in

a UDP packet and sent bysend, however, and that prods the server into action in this

instance.

In fact, one of the most important practical differences between TCP and UDP is

that there are no message boundaries in a TCP stream, whereas in UDP, every packet

(datagram) is effectively a self-contained message, complete with a length that is im-

plicit in its SETL string representation. For applications where reliability is not a con-

cern and where all messages are known to fit within the limited size of datagrams, this

109



Internet Sockets 3.4 UDP Sockets

can occasionally make UDP more convenient to use than TCP, though it is rarely the

case that reliability can be so far ignored that it is acceptable for a program to sleep

indefinitely waiting for a reply that never arrives, or to go into a confused state due

to a message that has arrived twice. Both of these situations are perfectly possible

with UDP, and the apparent convenience of UDP is but an evanescent illusion if the

programmer has to write code to deal with them.

A UDP server socket is created in much the same way as a TCP server socket:

fd := open(port number, ‘udp--server--socket’);

Again, the port number specified toopen is a string of decimal digits. The operations

available on this kind of socket are:

sendto( fd, host and port, datagram);

and

[[[host and port, datagram]]] := recvfrom fd;

These are also named after the corresponding Posix functions.

Notice that the host name and port number must be specified afresh on everysendto

call, and may be returned differently on everyrecvfrom call—the UDP server socket

has no memory of any particular client after passing each datagram.

Following is the UDP analogue of the sequential TCP server of Section 3.1.2. Re-

markably, it is even simpler:

110



Internet Sockets 3.4 UDP Sockets

fd := open(‘50013’, ‘ UDP--server--socket’);
loop
[[[whom]]] := recvfrom fd; -- ignore input datagram
sendto( fd, whom, date); -- send ”date” datagram

end loop;

Because a UDP server socket can send and receive data, unlike a TCP server socket

(which can only produce new connection sockets usingaccept), it can actually be used

in a client-like role. The following program is functionally equivalent to the very first

UDP client example above:

fd := open(‘0’, ‘ udp--server--socket’);
sendto( fd, ‘galt.cs.nyu.edu:13’, ‘’ );
[[[�, datagram]]] := recvfrom fd;
print (datagram);

This rather subverts the notion of a client, but is interesting as an illustration of how the

only fundamental difference between a UDP client and server in SETL is in the lack of

memory that a UDP server has. This client in disguise obtains an arbitrary ephemeral

port on the local machine and then uses the associated file descriptor to send an empty

datagram to a UDP server which as usual replies with an information-bearing datagram.

It is worth emphasizing that SETL maintains the distinction between UDP clients and

servers only in that it restricts file descriptors opened as client sockets (according to

the mode argument toopen) to the use ofsendandrecv, and restricts those opened as

server sockets to the use ofsendtoandrecvfrom.

111



Internet Sockets 3.5 Summary

3.5 Summary

This chapter has introduced the facilities that have been added to SETL for network

communication. The liberal use of processes can be seen to be playing a role in the

design methodology for handling various functional concerns that arise in the small

but canonical example of the line-length server.Selecthas started to emerge as the

central event-awaiting routine of servers and other processes that must be responsive at

all times to nondeterministically arriving inputs.

In the next chapter, these themes are explored further in a larger server case study.

112



Chapter 4

WEBeye: A Case Study

The best way to organize any system, especially a distributed system, is to try to frame it

as a hierarchy of command and control. In computer systems comprising a multitude of

processes, most services will be provided by subroutines to their callers, child processes

to their parents, and servers to their clients on the network. Even at the hardware level,

the notion of a master and slave is common, and it is this tendency for active entities

to play the role of coordinator or subordinate which transitively aggregates into the

tree-like global nature of most systems.

At the top level, which is notionally unique even if physically replicated for survival

reasons, is the genealogical head of a process tree. Client-server relationships induce

further dependencies between processes, cross-linking the skeletal tree.

This kind of system has an inside and an outside (its interface), and I simply refer

to it as aBox. The phenotype of a Box embodied in WEBeye will illustrate how the

113



WEBeye: A Case Study 4.1 What WEBeye Is

facilities described in Chapters 2 and 3 can work in harmony with the liberal use of

fullweight processes to produce a system that is flexible, robust, efficient, and main-

tainable.

4.1 What WEBeye Is

The purpose of WEBeye is to allow browser users to aim and zoom a videocamera and

simultaneously view the continuous stream of images being captured. The user can

control the camera by clicking or dragging a pointer on either the image itself or small

widgets adjacent to it.

The zoom widget is a slider with a red bar that follows the user’s pointing actions

and a blue bar that shows the amount of zoom actually achieved by the camera. The

blue bar therefore tends to follow the red one at a rate constrained by the speed of the

zoom servo-motor. For the Canon VC-C3 [35], the zoom factor ranges from 1 to 10.

The pan/tilt widget is the two-dimensional analogue of the one-dimensional zoom

slider, and for the VC-C3 hardware has a range of�90 to+90 degrees in azimuth (pan)

and�30 to +25 degrees in elevation (tilt), depicted on a flat grid. A red rectangle

shows the requested position in pan/tilt space, and can be dragged or moved quickly by

clicking, while a blue rectangle shows the progress of the hardware in moving towards

the current goal. Additionally, the size of the current field of view is reflected in the size

of the red and blue rectangles. This size is an inverse function of the zoom factor. More

precisely, the width and height of the rectangles show directly on the grid how many

114



WEBeye: A Case Study 4.1 What WEBeye Is

degrees of azimuth and elevation respectively are subtended by the camera’s current

view, so that the user has an immediate indication of what part of pan/tilt space is being

viewed.

The widgets for the real-time streaming image, the zoomer, and the pan/tilt control

are simple Java applets which receive events from the pointing device (a mouse or

equivalent) and from the WEBeye Box. Each applet maintains a rudimentary real-time

graphical display and also sends events derived from user actions back to the Box.

Image production and camera control are managed by the Box, which is the “server

side” of WEBeye. It notifies all clients of changes in the hardware parameters, and

accepts requests to change those parameters. The Box also supplies clients with the

processed image stream from the camera, which is independent of the camera control

and motion event streams.

The Box services are provided through TCP streams. Some are designed for the di-

rect convenience of Java clients, while others are more general in intent. Every service,

except for those which supply compressed image data embedded in MIME documents,

can be tested and learned about using the standard text-basedtelnet client. For exam-

ple, the most comprehensive camera control service, which supports many commands,

includes ahelp directive.

Besides Java clients, the Box supports browsers such as Netscape in a more primi-

tive way by delivering JPEG images in either a streaming (“server-push”) or snapshot

mode. It also accepts camera control commands implied by “imagemap” clicks.

Thehttpd service provided by thevc-httpd.setl program listed in Section A.19 re-

115



WEBeye: A Case Study 4.1 What WEBeye Is

sponds to HTTP requests as they might be generated by a browser, and instantiates

a template document with port numbers and other parameters, such that the resulting

document presents an imagemap with the live video playing in it. The hyperlink as-

sociated with the imagemap is a reference back to thehttpd service, so that a “click”

within the map causes camera motion and a new document instantiation. This is the

only service in the Box that has both a video and a camera (motor) control aspect.

4.1.1 Video Services

From the client’s point of view, the simplest video service is the “snapshot” service,

snap. It sends a MIME-encapsulated JPEG image in response to any HTTP-protocol

GET or POST request. A browser will always translate any URL beginning with the

server’s host name and port number into such a request, and display the resulting JPEG

image as it is received. A non-browser client such aswget can usesnap to take pictures

periodically for archival, and Java clients use it to fetch images based on URLs in the

same fashion as browsers.

Closely related to the snapshot service is the image-stream service,push. This is

intended for browsers which support Netscape’s “server-push” method of playing a

continuous sequence of JPEG or GIF images contained in an indefinitely long multi-

part MIME document, and thehttpd service just mentioned generates a reference to

this service in the document it instantiates. For the sake of clients whose slow net-

work connections could cause the buildup of images all along the route from server to

116



WEBeye: A Case Study 4.1 What WEBeye Is

client, the URL carrying this reference supports an optionalrate parameter, measured

(perversely) in milliseconds, which sets a minimum time between image transmissions.

This rate can be included in a URL asrate=integer after a question mark, in the manner

of parameters supplied by browser-based “forms” to Web servers.

Unfortunately, the only industry-wide standard for image streaming in browsers ap-

pears to be the one proposed for version 1.2 of the Java API, and most popular browsers

at the time of this writing have only recently caught up with version 1.1 in terms of their

built-in support and bundled Java classes.

However, a third “video” service in the WEBeye Box,giver, is offered as a transi-

tional workaround to deal with this problem, which afflicts Java applets in both major

browsers. A natural interface for Java clients is to have a simple command/response

handshake over a sustained network connection. Each time the client requests another

image by sending the commandJPEG, the server replies with the latest image as soon

as it has one that is different from the last one it sent that client. The server side of this

has already been implemented, because just such a protocol is used by a server within

the Box. The client side, if Java is used, is easy to implement in the 1.2 API version

but practically infeasible with earlier versions. So, to make it as convenient as possible

to adopt the new API when it becomes available and still provide a working (if sub-

optimal) service meanwhile, thegiver service acceptsJPEG commands, but replies to

each one not with an image but with a URL that the client can then use (even in the 1.0

API) to fetch the JPEG image itself. Each URL that this rather trivial service generates

is a reference to the snapshot service, decorated with a sequence number to help defeat

117



WEBeye: A Case Study 4.1 What WEBeye Is

browser caching (which cannot even be fully turned off in Internet Explorer).

Finally, there is theimage service within the Box which is used bysnap and by

httpd. It employs a command/reply handshaking protocol over a TCP connection,

where the client receives a JPEG image in response to eachJPEG command and the

response is delayed until the latest image picked up by the server is different from the

last image sent to that client, if any.

4.1.2 Camera Control Services

The pan/tilt/zoom camera control hardware accepts commands and delivers acknowl-

edgements and event notifications over a serial line. The Box provides a bridge between

this device and any number of Internet clients.

The most comprehensive of the camera control services,camera, supports a proto-

col that is designed to be convenient for programs and at the same time mnemonic for

people, in the best tradition of Internet servers. Programmers intending to write code

which communicates with thecamera service can obtain all the information they need

by using the standardtelnet client to connect to the appropriate host and port number,

which should begin a session with the server sending something like this:

>Welcome to the Canon VC-- C3 pan/tilt/zoom camera control server.

>Type Help for help. Cavil and whine to dB (bacon@cs.nyu.edu).

.

This will be displayed in the interactivetelnet session window. Ifhelp is entered as

suggested, the response will be something like this:

118



WEBeye: A Case Study 4.1 What WEBeye Is

>

>Commands are:

>

>Help [command-- name]

>Mode fHost j RCg

>Notify fOn j Offg

>Zoom f[To] factor j By factor j In j Outg [At speed]

>Move f[To] pan tilt j By pan tiltg [[In] ms j At speed]

>fUp j Down j Left j Rightg deg [[In] ms j At speed]

>Ramp ms

>Show fMode j Notify j Zoom j Move j Position j Rampg

>Clear

>Reload

>Setup

>Reset

>Quit

>

>A null command (empty line) repeats the previous command.

.

If the user then playfully typeshelp help, the serious reply is as follows:

>

>Help

> -- Gives a compact synopsis of all commands, with optional

> words shown in brackets [ ], grouping indicated by braces f

> g, and alternatives separated by bars j.

> -- All command names and arguments are case-- insensitive,

> though for clarity they are shown here as literal names

> starting with an uppercase letter. Substitute a value for

> any (possibly hyphenated) name that begins with a lowercase

> letter. Numbers may include signs and decimal points.

> -- Help is the only command besides Show which produces output

119



WEBeye: A Case Study 4.1 What WEBeye Is

> back to you, the client, when asynchronous notification is

> off (see the Notify command). You can tell where a piece

> of help ends by where the ”>” lines leave off and the final

> ”.” on a line by itself occurs. Server usage errors (your

> protocol mistakes) are also reported in this ”help” format.

> Output from Show always consists of a single line, as does

> each asynchronous notification (event message), so their

> ends are also easy to recognize.

>

>Help command-- name

> -- Tells you all about a specific command.

.

This describes the difference between help/diagnostic output and show/notify output.

Here are the results ofhelp notify andhelp show:

>

>Notify On

> -- Turns on asynchronous notification. You (the client) will

> get an event message, formatted as a command recognized by

> this server for convenience in playback, whenever there is

> a change in the mode, zoom, pan/tilt, or ramp, and whenever

> a zoom or pan/tilt limit is reached. (Other messages,

> with no corresponding command but formatted similarly,

> will later be added. For now, there is a catch-- all message

> ”Canon”, showing things the hardware is saying.)

>

>Notify Off

> -- Turns off asynchronous notification. You can still get

> information synchronously by using the Show command.

.

>

>All Show commands produce their output in the form of a

120



WEBeye: A Case Study 4.1 What WEBeye Is

>command that could later be fed back in to the server to

>re-- establish the state reported by the Show.

>

>Show Mode

> -- Yields Mode Host or Mode RC.

>Show Notify

> -- Yields Notify On or Notify Off.

> -- Each asynchronous notification (event message) and

> Show result is sent to you, the client, on a single,

> newline-- terminated line.

>Show Zoom

> -- Yields the current zoom factor as a Zoom [To] command.

>Show fPosition j Moveg

> -- Yields the current pan and tilt angles as a Move [To]

> command.

>Show Ramp

> -- Yields a Ramp command for the current ramp period.

.

Finally, here is the output fromhelp move:

>

>Move [To] pan tilt [[In] ms] j At speed]

> -- Points the camera at pan degrees azimuth, tilt degrees

> elevation, and stores these as the current values.

> -- Positive means right for pan, up for tilt.

> -- Range is -- 90 to 90 for pan, -- 30 to 25 for tilt.

> -- Resolution is 0.115 deg.

> -- The angular trajectory is shaped at each end by the

> parabola suggested by the Ramp period. If the angular

> distance to move is large enough, maximum speed will be

> sustained in the interval between the acceleration and

> deceleration ramps unless constrained by the optional In

121



WEBeye: A Case Study 4.1 What WEBeye Is

> or At specification.

> -- If ”[In] ms” is specified, the server will try to plan a

> camera motion trajectory that takes ms milliseconds.

> -- If instead ”At speed” is specified, the trajectory

> speed will be limited to the given maximum during

> the constant-- speed interval between acceleration and

> deceleration ramps.

> -- The units of speed in ”At speed” are deg/sec, with a

> resolution of 1 deg/sec and a range of 1 to 70 deg/sec.

>Move By pan tilt [[In] ms] j At speed]

> -- Adds pan degrees azimuth and tilt degrees elevation to

> the current pan and tilt values, and calls Move [To].

.

Now, suppose the user enters the commandnotify on, requesting event notification. Any

updates to hardware settings resulting from, e.g.,move andzoom commands will cause

command--like messages to be sent to all such clients interested in events. For example,

if this telnet user or any other client typed the commandzoom out, a message such as

Zoom 6.180

would appear in thetelnet user’s display. Clients can thus easily record camera con-

trol activity for later playback. Current settings can always be sensed with the Show

command, so for exampleshow move or equivalentlyshow position might produce

Move To -- 76.671 -- 19.774

The camera service itself is little more than a command-processing front end for

thedo andnotice services provided by thevc-do.setl program listed in Section A.11,

122



WEBeye: A Case Study 4.1 What WEBeye Is

which is responsible for maintaining a high-level, state-bearing model of the camera as

an acceptor of commands and producer of events.

In principle, all clients could use the generalcamera service to issue commands

and receive notifications, but it works out better if things are made even simpler for

Java clients, which tend to be multi-threaded and therefore favor specialized services

relating to their particular responsibilities. Accordingly, thejumper, mover, andzoomer

services accept client input consisting purely of one or two numbers on each line, and

build the appropriate command to send to thedo service for each such line. Also in this

category is themouse service, which is so tailored to the needs of Java clients that they

essentially just have to pass pointing device gestures through “in the raw”, andmouse

maps these into camera control commands for transmission to thedo service. This is

effectively a generalization of the imagemap handling performed by thehttpd service

previously mentioned.

Similarly, there are Java-friendly services to provide an interface to thenotice ser-

vice, so that events can be delivered to Java threads in the simplest possible way. These

are calledevjump andevzoom.

Thevc-do.setl program, in its event-producing capacity (thenotice service), relies

upon a pair of lower-level services,notify andevent, which are linked such that every

event received bynotify is broadcast to all clients ofevent.

123



WEBeye: A Case Study 4.1 What WEBeye Is

4.1.3 Administrative Services

WEBeye is designed with round-the-clock, unattended service in mind, but its admin-

istrative interface also makes it easy for people who are not computer experts to start,

stop, and check up on the system, and to manage the log files.

WEBeye will normally run continuously unless there are problems severe enough

to cause a critical component failure. For example, certain forms of resource exhaus-

tion under heavy load conditions can trigger failures. The system is large and complex

enough that it is also appropriate to “expect the unexpected” from hardwareandsoft-

ware (see Section 5.3.3). When the unexpected happens, WEBeye does its best to bring

itself down cleanly and completely, in the hope of clearing the condition which caused

the failure. Then, when it is restarted, it has the best possible chance of survival.

In order to run unattended, WEBeye has to be able to be restarted automatically.

This means that there has to be some program external to WEBeye that can observe

when it has crashed or is not functioning correctly, and attempt to restart it. To this

end, thevc-cron.setl program listed in Section A.9, which is intended to be run every

minute from the administrative user’scrontab file, steps through a series of checks on

the presence and correct functioning of the Box. If the Box appears not to be running,

or any of its principal servers fail to give satisfactory responses,vc-cron.setl tries to shut

it down cleanly and restart it. However, in the event of recurring failures unrelieved by

any indications of complete success, the frequency of restart attempts is decreased by

powers of two until only one attempt is being made every 64 minutes. (This is in part

124



WEBeye: A Case Study 4.2 Software Structure

an effort to avoid the Sorcerer’s Apprentice syndrome, where an attempt to expunge

one problem only leads to more problems, and in part an effort to avoid sending the

WEBeye administrator too much e-mail, since a failure report is sent to that party every

timevc-cron.setl tries to restart the Box.)

Restarting WEBeye involves shutting it down cleanly and then starting it again, as

vc-restart.setl (Section A.37) does by callingvc-quit.setl (Section A.35) and thenvc-

go.setl (Section A.18). Another program,vc-check.setl (Section A.5) is also provided,

and all these programs can be invoked via trivial wrapper commands such asrestart for

a more manual style of administration.

4.2 Software Structure

The primary program in the WEBeye Box isvc-toplev.setl, as listed in Section A.42.

It is responsible for starting, monitoring, and stopping all the programs which provide

one or more TCP services. These programs and their descendants can be clients of

services in the Box, sovc-toplev.setl is careful to start and stop them in an order which

respects client-server dependencies.

Following is a snapshot of a process tree taken a few minutes after the initialization

of a WEBeye Box that is currently in operation [18] at Lehigh University. Each line

begins with the number of minutes and seconds of CPU time consumed so far by its

corresponding process. The indentation structure indicates parent-child relationships:

0:00 setl vc-toplev.setl

125



WEBeye: A Case Study 4.2 Software Structure

0:03 \_ setlrun -5
0:00 \_ setl vc-event.setl
0:00 | \_ setlrun -8
0:00 \_ setl vc-giver.setl
0:00 | \_ setlrun -8
0:00 \_ setl vc-image.setl
0:44 | \_ setlrun -8

12:56 | \_ image-pump
0:00 \_ setl vc-push.setl
0:00 | \_ setlrun -8
0:11 | \_ setlrun -8
0:00 | \_ setlrun -8
0:00 \_ setl vc-snap.setl
0:00 | \_ setlrun -8
0:00 \_ setl vc-do.setl
0:01 | \_ setlrun -8
0:00 | \_ setl vc-model.setl
0:01 | \_ setlrun -9
0:00 | \_ setl vc-seq.setl
0:00 | \_ setlrun -10
0:00 | \_ setl vc-send.setl
0:00 | | \_ setlrun -11
0:00 | \_ setl vc-recv.setl
0:01 | \_ setlrun -11
0:00 | \_ setl vc-input.setl
0:00 | \_ setlrun -12
0:00 \_ setl vc-httpd.setl
0:00 | \_ setlrun -8
0:00 \_ setl vc-mouse.setl
0:00 | \_ setlrun -8
0:00 \_ setl vc-mover.setl
0:00 | \_ setlrun -8
0:00 \_ setl vc-jumper.setl
0:00 | \_ setlrun -8
0:00 \_ setl vc-zoomer.setl
0:00 | \_ setlrun -8
0:00 \_ setl vc-camera.setl
0:00 | \_ setlrun -8
0:00 | \_ setl vc-ptz.setl -- 10
0:01 | | \_ setlrun -11 -- 10
0:00 | \_ setl vc-ptz.setl -- 10
0:01 | | \_ setlrun -11 -- 10
0:00 | \_ setl vc-ptz.setl -- 10
0:01 | \_ setltran
0:00 | \_ setlrun -11 -- 10
0:00 \_ setl vc-evjump.setl

126



WEBeye: A Case Study 4.2 Software Structure

0:00 | \_ setlrun -8
0:00 \_ setl vc-evzoom.setl
0:00 \_ setlrun -8

At the time this snapshot was taken, there were two clients connected to thepush

image-streaming service (Section 4.1.1) and three to thecamera control service (Sec-

tion 4.1.2), though one of the latter had just connected—the instance ofsetltran indi-

cates that we caughtvc-camera.setl at a moment when it had just started to instantiate

vc-ptz.setl as a child process for the new client, and the SETL translator was still active

(setltran disappears immediately after passing the result of its translation tosetlrun;

occasionally, one can even catch an instance ofsetlcpp, the SETL preprocessor, in one

of these displays).

Each negative number appearing in this process display is actually a command-line

parameter passed fromsetl to setlrun identifying the file descriptor on whichsetlrun is

to read the translated form of a SETL program. User-level command-line arguments to

setl and hencesetlrun are placed after an argument of the form “----”, as mentioned in

Section 2.1, and we see instances of this in the process display wherevc-camera.setl

passes the file descriptor for each newly accepted client tovc-ptz.setl. The fact that it

is always the same number (10) here reflects the fact thatvc-camera.setl always closes

its own copy of that file descriptor after it has created the child process (vc-ptz.setl)

which preserves the reference to the underlying kernel data structure, so the number is

available to be used again invc-camera.setl when the next client seeks a connection.

Whenvc-toplev.setl is started, it first attempts to make sure there are no other run-

127



WEBeye: A Case Study 4.2 Software Structure

ning instances that could conflict with it. The mutual exclusion mechanism is conserva-

tive. It is based on the existence of a lock file that is atomically created and destroyed.

A clean shutdown of the Box ends with removal of the lock. If this does not happen,

due to some catastrophic failure (such as loss of system power or an uncaught error

in vc-toplev.setl itself), or if the lock exists because there is another running instance,

the administrator of the Box is cautioned to perform certain checks before separately

removing the lock and then restarting the Box. (See thecommenceprocedure invc-

admin.setl, listed in Section A.1.)

Because of the dependencies between servers and clients through the services they

respectively provide and use, including the dependencies transitively created by parent-

child relationships, the next major job ofvc-toplev.setl is to analyze all the source texts

comprising the Box, so that it will be able to start servers in an order that ensures no

client is started before a service it depends on is available.

This is a matter of preprocessing the SETL source programs, scanning for the rec-

ognizable patterns indicating the relationships of interest, and constructing the appro-

priate maps. Provided that consistent idioms are used to create child processes and to

request TCP services, this is more reliable than trying to maintain a separate database

of dependency information (a hazard familiar toMakefile users).

Dependencies on services effectively disappear once they have been satisfied by

services becoming available, so just before starting to spawn the server processes, the

top-level program sets up a little registry service to allow servers to “publish” their

services, and a corresponding service for clients to look up information about services,

128



WEBeye: A Case Study 4.2 Software Structure

particularly their dynamically assigned TCP port numbers.

With the registry in place,vc-toplev.setl proceeds to start servers which have no

(outstanding) dependencies, waiting for all the services of the Box to be published,

and shrinking the dependency maps as services appear. It also issues warnings if some

services seem to be taking unreasonably long to publish themselves.

If and when all the services do come up,vc-toplev.setl announces to the world that

the Box is ready for use by external clients. It does this by instantiating a template

HTML document with an embedded URL that refers to a key port number in the Box.

It then stores that document into a file and redirects a certain link to point to it. The

link is what is called asymbolic linkin Unix, which is a special kind of file that has

no content of its own, but merely refers to another file, such that when input or output

is performed on the link file, it really happens on the referred-to file. The link that is

manipulated byvc-toplev.setl has a name that is known to a nearby Web server. This

well-known link has four stages in its life cycle:

1. When the Box is cleanly down, it points to an HTML document which says so.

2. When the Box is in the initial process of analyzing dependencies and starting

servers, the link is made to point to a static document indicating that the Box is

in its “initializing” transition state.

3. When the Box is fully operational, the link is redirected to the HTML document

that is instantiated with the main WEBeye port number as mentioned in the pre-

vious paragraph.

129



WEBeye: A Case Study 4.2 Software Structure

4. When the Box is about to attempt a clean shutdown, the link is again redirected to

a static document identifying a transition state, this one called “closing”. Under

normal circumstances, the Box will not spend long in the latter state, and the link

will quickly be redirected to the “cleanly down” document.

There is actually one deliberate oversimplification in the above description, how-

ever. Because the principal interface to WEBeye is via the imagemap provided by the

httpd service implemented byvc-httpd.setl, and this service already instantiates a tem-

plate HTML document in response to each imagemap click, it is logical for thehttpd

implementation to serve the initial document as well. Redirection of a symbolic link is

not an atomic operation in most versions of Unix, either—the link has to be destroyed

and then re-created—so there is the slim possibility that it might not exist just at the

moment a Web server attempts to read from it. For these reasons, the link is not read

directly by the Web server itself, but by a CGI (Common Gateway Interface) script

which waits a short while for the link to exist if necessary. This script then reads the

file referred to by the link, and inspects it for a special prefix character sequence. If this

sequence is not found, the file is presumed to contain a static document, which the script

serves verbatim. If the special prefix is found, however, it is assumed to be followed

by a properly delimited “host:port” designation of thelookup service. The script then

useslookup to find the host and port location of thehttpd service, and opens a client

connection to the latter. Web servers supply CGI scripts with any parameters that were

received on the original request, typically arising from information in a URL after the

130



WEBeye: A Case Study 4.2 Software Structure

script name, and transmit these parameters to CGI scripts through thePATH INFO and

QUERY STRING environment variables. The CGI script that is generated at system

configuration time fromvc-master.cgi (see Section A.26) passes the URL-originated

parameters through to thehttpd service just as a browser would, and serves whatever

httpd returns. Similarly, the CGI script that is generated fromvc-jmaster.cgi (Sec-

tion A.24) uses thelookup service to obtain the host and port locations of the services

needed by Java-based clients, and substitutes these into the template HTML document

it serves, which becomes the primary “page” for the continuous-motion browser inter-

face featuring the control applets described in Section 4.1.

The template document instantiated byhttpd refers back to thehttpd service, so

after serving the initial document, the Web server is not involved. Indeed, the Web

server could have been bypassed entirely by a user who already knew the port number

on which the WEBeyehttpd service was listening, perhaps from previous contact or

through having sufficient access to WEBeye’s private files. In the case of the Java

interface, the Web server is also involved only long enough to invoke the CGI script

which instantiates the page referring to the applets, and to serve the byte code of those

applets.

4.2.1 Video Services

The programvc-snap.setl, listed in Section A.41, implements the public snapshot ser-

vice. It checks but ignores the details of the required HTTP GET or POST request from

131



WEBeye: A Case Study 4.2 Software Structure

the client, and replies with a MIME-wrapped JPEG image, which it in turn obtains from

the core video server.

Being a defensive public server, it deals with each client through a pump stream

connected to a child process, and keeps a map from pump stream file descriptors to

client information records. It is a small, multiplexing data processing module.

The program which implements the server-push service isvc-push.setl, listed in

Section A.34. Like the snapshot server, it is not fussy about the details of the HTTP

request. It does, however, support an optionalrate parameter as described in Sec-

tion 4.1.1. It is another small, multiplexing data processing module that deals with

clients through child processes.

So is thevc-giver.setl program listed in Section A.17, whosegiver service gives out

URLs for a sequence of JPEG images as a temporary measure pending the widespread

availability of the Java API that supports direct image streaming. Each URL it creates

contains a reference to thesnap (snapshot) service.

Finally, there is theimage service provided by thevc-image.setl program listed in

Section A.20. It is used byvc-snap.setl andvc-push.setl. It interfaces with an external

program,image-pump, which is written in C and, when active, captures images and

converts them to JPEG format as quickly as it can, telling the parent SETL server (vc-

image.setl) about each image as it is ready.

This server,vc-image.setl, is intended for use strictly within the Box. It does a

rudimentary check to authenticate each client (see the listing ofvc-allowed.setl in Sec-

tion A.2). Once satisfied, it dispenses with the usual need for an intervening child

132



WEBeye: A Case Study 4.2 Software Structure

process and communicates directly with the client. It is not a complex program, but

does keep a little state associated with each client so that each client can start receiving

an image when it says it is ready to receive it and when a JPEG image that is new to

that client has arrived fromimage-pump.

4.2.2 Camera Control Services

The camera service is provided by the SETL programvc-camera.setl listed in Sec-

tion A.4. This program is really nothing more than a front end for a much larger

program,vc-ptz.setl (Section A.33), which implements the protocol introduced in Sec-

tion 4.1.2. The front end performs the important function of making the service avail-

able to an arbitrary number of clients simultaneously, which it does by instantiating

vc-ptz.setl once for each client, as a child process connected through a pump stream.

The front end server also logs some information, such as the beginning and end of each

client session, and distributes TERM (“terminate”) signals when it receives a TERM

signal, so that all the child processes will close their connections and exit rather than

continuing after thecamera service itself has (presumably) gone down.

When vc-camera.setl accepts a new client connection, it passes the new file de-

scriptor tovc-ptz.setl on the command line. This child process then deals with the

client directly through this file descriptor. In the interests of modularity and what Dijk-

stra called a “clear separation of concerns” [58],vc-ptz.setl does little more than parse

and check protocol commands, and pass them to the localdo service (seevc-do.setl)

133



WEBeye: A Case Study 4.2 Software Structure

in the form of SETL maps. If the client ofvc-ptz.setl has requested continuous asyn-

chronous notification of events by issuing the commandnotify on, thenvc-ptz.setl also

maintains a connection to the localnotice service, which (like thedo service) is pro-

vided byvc-do.setl.

Once again, by the same structuring principles,vc-do.setl is a small program whose

chief concern is the multiplexing of client sessions, and it hands the “real” work off

to another program,vc-model.setl, which maintains a stateful, high-level model of the

pan/tilt/zoom camera controller. Normally,vc-do.setl is instantiated just once, and so is

vc-model.setl, for a given serial port. This model maintainer is strictly sequential, and

completes each command (as passed down fromvc-ptz.setl throughvc-do.setl) before

it begins the next one.

Thusvc-do.setl actually has to do some minor arbitration of requests from the mul-

tiple clients of itsdo service when they cannot all be satisfied at once. If it is busy

(meaning that a command has been sent tovc-model.setl but not yet been replied to)

when a command is received from a client, it will enter the request on a FIFO queue.

However, each client is only allowed up to one pending request—vc-do.setl will not

even read a further command from a client that already has one in the queue. Clients at

this level get an explicit indication of command completion from thedo service.

Thejumper, mover, andzoomer services designed for Java clients, whose programs

vc-jumper.setl, vc-mover.setl, and vc-zoomer.setl are listed in Sections A.25, A.29,

and A.43 respectively, all use thedo service in such a similar way that they are im-

plemented by using the SETL preprocessor to define some symbols and then textually

134



WEBeye: A Case Study 4.3 Summary

includevc-simpler.setl (Section A.40).

The gesture-interpretingmouse service, provided by the programvc-mouse.setl

listed in Section A.28, also usesdo.

The Java-friendlyevjump andevzoom services, which are provided by the programs

vc-evjump.setl andvc-evzoom.setl listed in Sections A.13 and A.14 respectively, use

thenotice service through the textually includedvc-javent.setl listed in Section A.23.

Thevc-do.setl program is the logical place to provide thenotice service as well as

thedo service, because it is in direct contact with both the model maintainer and with

a low-level event service,event, provided byvc-event.setl.

The vc-model.setl program, in its turn, implements high-level commands as se-

quences of lower-level commands, but it hands the actual timing, handshaking, and

retrying responsibilities pertaining to command sequences off to yet another program,

vc-seq.setl, which also happens to be in the best position to send low-level event no-

tifications to a service callednotify. Thenotify service is provided by thevc-event.setl

program just mentioned, and works as follows: when a client apprisesnotify of an

event,vc-event.setl distributes that event to all clients of itsevent service.

4.3 Summary

Complexity is the enemy of flexibility, robustness, and maintainability. Modularity is

the best defense, and the free use of fullweight processes as modules has been illus-

trated in this chapter. These processes do not share memory, and only communicate

135



WEBeye: A Case Study 4.3 Summary

by passing messages through pipes and over the network. This design restriction is

not found to be burdensome in practice, and fits in well with SETL’s value-semantics

orientation.

The ease with which arbitrary numbers of clients can be tracked in a SETL program

works hand in hand with this attention to modular design. This keeps all the programs

in the WEBeye case study small and readable, supporting the Box’s flexibility, robust-

ness, and maintainability. Efficiency has been assured by isolating the CPU-intensive

work in theimage-pump program which is written in C and takes advantage of an ex-

isting JPEG conversion library. With this division of labor, we find it unnecessary to

schedule programs for destruction by labelling themprototypes: the SETL programs

already consume almost no resources compared withimage-pump.

However, the interfaces between modules are not checked by an external party.

There is currently nothing like CORBA’s Interface Description Language (IDL) [153]

for specifying what should and should not be in the maps that pass between SETL pro-

grams, and certainly nothing approaching the power of Ada specifications to pin down

interfaces. The wise SETL programmer will therefore insert a few redundant checks on

any received map. This is actually a very minor bit of housekeeping compared to the

checking that needs to be done on data arriving fromexternalsources on a network in

a language-independent setting. In any case, good form in a piece of data is not usually

enough to ensure that it makes sense when and where it occurs. The most subtle and

extensive checks will be semantic and context-dependent.

Similarly, an exception-handling mechanism can be helpful, but does not relieve the

136



WEBeye: A Case Study 4.3 Summary

programmer from considering exceptional cases. To the extent that processes which

might reasonably be expected to raise exceptions are kept small and well isolated, the

“safety net” effect for which most exception handling is specified is already achieved

in the modular SETL designs presented here.

In the next chapter, we look at some more things the programmer can do to de-

sign robust, flexible, maintainable interfaces and programs for data processing over the

Internet.

137



Chapter 5

On Data Processing

The world of externally motivated programs is much larger than that of elegant al-

gorithms, and this semantic richness presents tremendous challenges to the language

designer. It is is this kind of computing that I have been callingdata processing.

5.1 The Field

In contexts as diverse as science, business, and academic research, data processing is

as fundamental to what computers really do as computer science is to the study of what

they might do.

But what is involved in data processing? All that usually happens to data when it

gets “processed” is that it gets copied from one place to another. There is almost no

computation in data processing, and few algorithms. And yet arranging for the right

138



On Data Processing 5.1 The Field

data to appear in the right place at the right time can be every bit as challenging as the

most difficult mathematical analysis. More so, in fact, because the problems tend to be

open-ended, and the psychology of users cannot usually be reduced to cogent proofs.

Neither does data processing have clear boundaries that distinguish it from other

forms of computing, and we must be content with a rather intensional description of

what it embraces. However, this thesis does not seek primarily to define data process-

ing, but to show that SETL, conservatively augmented, is remarkably well suited to

roles far from those described inOn Programming[177].

Perhaps the most salient feature of data processing is that it tends to be concerned

with datainterfaces, spanning the range from low-level input/output formats to high-

level user interfaces. A contemporary office information system will typically comprise

mostly off-the-shelf software such as spreadsheet packages, database packages, word

processors, and operating systems, configured for local use. Additionally, there will

be customized elements such as graphical user interfaces and specialized programs

relating to the specific activity of the organization. And then of course there is the data

itself, which all the other components must directly or indirectly accommodate.

A major task of the data processing programmer is to provide interfaces between

these components—decoding, observing data access coordination requirements, and,

if not actually transforming data, then at least formatting it for presentation to one or

more sinks. With the great rise in the importance of computer networks, the modern

data processing programmer also has to be able to deal with the issues surrounding

distributed concurrency, including latency and the need for redundancy and security.

139



On Data Processing 5.2 Problems and Solutions

We have come a long way from the simple, sheltered world of card readers, 9-track

tapes, local disks, and line printers all operated in batch mode. The increase in the

complexity of data processing environments is one reason why high-level languages

are more important than ever. Fortunately, they are also more affordable.

5.2 Problems and Solutions

The intelligent modern programmer, faced with the task of designing a data process-

ing system, will try to use existing packages as much as possible, and thereby reduce

the job to one of coordinating large chunks of software by means of relatively small

interconnection programs.

These programs, when they are written in an interpretive “shell” language, are often

calledscripts, and typically operate at the highest semantic level in the system, dealing

as they do at the granularity of files and whole programs. Shell languages have their

foundations in early “job control” languages.

Because the shell language has been the unavoidable starting point for any serious

computer work right up until the age of the GUI (and still is, for many programmers),

and because memory was not always a cheap and abundant resource, shell languages

have tended to be very thin, lacking such amenities as lexical structure and sometimes

even control structure. Many do not support the concept of an algebraic expression,

and most provide little opportunity for static checking. Historically, therefore, the goal

of a system designer has been to do as little as possible at this high level, and merely

140



On Data Processing 5.2 Problems and Solutions

use the shell as a launching pad for programs coded for efficiency.

Not surprisingly, we feel the drag of this history today. People still tend (1) to use

unnecessarily weak shell languages, (2) to use systems programming languages where

high-level languages would be more appropriate, and (3) to show little regard for their

shell scripts. The last of these phenomena probably results from the fact that most

shell languages discourage good programming style. Every successful tool starts to be

overused at some point, and this is exactly the situation we find ourselves in now—shell

languages are being pressed to perform feats they were never designed for.

Much of this pressure on our worn-out tools comes from the modern data processing

scene. What more obvious language to write small interconnecting programs in than

the locally available shell language? If programs were as small as they are initially

conceived to be in the minds of their creators, and if they stayed that way, all might be

well, but of course the simple program hacked together in the weak language all too

often grows into the unmanageable monster, and earns the respect of the unwary only

after it has caused considerable frustration.

It is commonly said that the choice of language has a controlling influence on how

we think about programming. It is equally true to say that it has a profound influence

on what we think of a programafter it has been written, though the operative factor

in that regard is the care taken by the programmer to make the program readable in

the first place. Of course, some languages make writing readable programs easier than

others do.

SETL’s particular contribution to readability, when programs are written in a style

141



On Data Processing 5.2 Problems and Solutions

appropriate to its mathematical character, is that its most fundamental and reusable

forms make sense when literally “read out loud” in phrases like “the set of [all]x in

[the universe]Ssuch thatP(x) [holds]” for “fx in S jjj P(x)g”, or “if [there] exists [an]

x in S such thatP(x) [holds] : : :” for “ if exists x in S jjj P(x) . . . ”. These may seem

idle matters to those who have no experience with SETL, but the “dual view” of sets

and predicates alluded to in Section 1.1 is actually tremendously important in helping

the programmer to stand back and look at a set or predicate as being delineated by

constraints on a universe (the mathematical view), or to move closer and look inside to

see a mechanism in which iterators produce candidate values that are tested in turn and

either accepted or rejected (the algorithmic view). The strength in the fact that the same

set or predicate can be viewed inbothof these ways is that the mental image created

for the one view provides a helpful doublecheck on the other.

A similar psychology obtains in the casefexpression: iteratorsjjj predicateg, where

further readability springs from the focus on theexpressionthat characterizes all the

members of the set. The singletonfexpressiong then appears as a degenerate form

of this set former, and the enumerated setfexpr1, expr2, . . . , exprkg is a natural gen-

eralization of the singleton, lending still more readability to SETL programs through

uniformity of notation.

It is interesting to compare how SETL encourages high-level ways of thinking about

problem solving to how languages such as Ada 95, with their strong support for defin-

ing and implementing high-level abstractions efficiently, do it. SETL takes the “mini-

mum of fuss” approach, and really offers little beyond a few well chosen abstractions

142



On Data Processing 5.2 Problems and Solutions

from the foundations of mathematics, generally free of inconvenient restrictions and

machine-level concerns. Ada 95, on the other hand, deliberately predefines few ab-

stractions, but provides facilities whereby a skilled programmer can create high-level

abstractions running the gamut from generic to completely application-specific.

In the world of data processing, at least in that large part of it that involves small

programs, SETL is attractive in combining readability with conciseness, so that a per-

son with almost no knowledge of a system or its conventions can usually start to under-

stand a SETL program rather quickly without getting lost in details. Of course, a well

written Ada 95 program will also have this quality, but the program will probably have

taken much longer to write than the equivalent SETL program, and will inevitably be

longer textually. There is no place for the quickand dirtyin any realm, but sometimes,

especially for small programs, the writer’s need to save time and the reader’s need to

get the right idea quickly are better served by a minimal, high-level script than by an

exemplar of masonry.

If programs are the modules of a system, software engineering teaches us that we

are most likely to achieve clean interfaces and comprehensible implementations by

keeping those modules as small as they comfortably can be, too. In the modern data

processing setting, the fact that a small program can be modified with much more

confidence than a large one is also a good defense against shifting user requirements.

Furthermore, the substantial cost advantages of using pre-existing large software com-

ponents as much as possible dictates a strong anti-monolith policy in favor of small

interconnecting programs. Finally, the rise of the network over the slowly rusting main-

143



On Data Processing 5.3 Guidelines

frame militates a distributed approach, and while Ada 95 is an excellent example of a

language that allows the coordination issues to be dealt with even without sacrificing

the advantages of static checking, Ada 95 is really a systems and applications pro-

gramming language, as distinct from what might be regarded as a more than usually

respectable scripting language (SETL). In a large data processing system, various lan-

guages, some of them quite specialized, will be found useful at various points, and

again this argues for many little programs over a few big ones.

The tools at the disposal of a data processing programmer must be flexible, con-

venient, reasonably efficient, and robust. This is at least as much a matter of good

implementation as it is of good language design. Because people tend to look down on

data processing tools in the first place, they will rapidly become impatient with them

unless they are obviously of high quality and scope, so although the design of a lan-

guage should not be too fixated on implementation concerns, it should at least balance

idealism with enough foresight to accommodate practice in a data processing context.

This has been the motivation behind most of the SETL extensions described in this

dissertation.

5.3 Guidelines

Let us now shift our attention from the responsibilities of the language designer and

implementer to those of the programmer.

144



On Data Processing 5.3 Guidelines

5.3.1 On Checking

Practically any data processing system will be forced to deal with some environment

of “foreign” input data. It happens again and again that programmers, armed with tools

better suited to systems programming than to high-level applications, will, in the face

of deadlines, inexperience, and negligent supervisors, take shortcuts in the coding of

input routines, and allocate fixed-size input buffers even in situations where they know

they shouldn’t. This kind of bug remains dormant until some attacker or innocent

button-pusher awakens it with a long input record, and when it finally bites by nibbling

at some memory it isn’t supposed to, can be very difficult to track down. From this we

learn the rule:

� No unchecked restrictions.

Actually, this should be refined a little, because overflows occur in many forms, and

some of them are quite innocent. The correct advice is to be aware of when overflows

are possible, and to make sure that their effects are understood (and not disastrous).

This rule is particularly relevant for distributed data processing, where programs

tend to have greater exposure to malicious or clumsy adversaries than subroutines in

relatively protected environments have. Stevens, in his famous introductory text on

network programming, writes [194, p. 15]:

It is remarkable how many network break-ins have occurred by a hacker

sending data to cause a server’s call tosprintf to overflow its buffer. Other

145



On Data Processing 5.3 Guidelines

functions that we should be careful with aregets, strcat, andstrcpy, nor-

mally callingfgets, strncat, andstrncpy instead.

The distinction he is making here is between ANSI C routines that respectively do not

and do provide a way for the programmer to limit the amount of data written into a

given memory area.

5.3.2 On Limits

Often the best way to guard against the ill effects of a memory or arithmetic overflow

is to make sure the overflow can’t happen at all. If the restriction isn’t really necessary,

perhaps it is worth removing, giving us the closely related rule:

� No silly restrictions.

This is entirely germane to the input buffer example, because the scrupulous program-

mer will either put in appropriate checks, or use some form of dynamic allocation to

make sure there is always a big enough buffer if there is a buffer at all.

The truly wise programmer will have this taken care of automatically by using a

language like SETL, which actually makes it more convenientnot to have an input size

restriction than to impose one. For example, if the input is organized into some kind of

“lines” as defined by local file system and operating system conventions, the statement

line := getline fd;

146



On Data Processing 5.3 Guidelines

assigns a single line (orom, at the end of file) tolineno matter whether the line contains

0 characters or a billion. Its only alternative is to raise an exception due to insufficient

virtual memory. The silent disasters of overflowing a buffer or yielding only part of the

input line simply are not options, by the definition ofgetline.

Again, this is a rule which makes most sense at the highest semantic levels. At

lower levels, closer to the hardware, some restrictions are unavoidable, and need to be

properly checked. At the SETL level, it is usually most appropriate simply to pretend

that no restriction exists, as in this example. This is really saying that exceeding the

restriction is a rare resource exhaustion event that should probably be treated along

the lines of running out of hard disk space—crashing the program with a diagnostic

message may be a reasonable response, especially if the program is a small and well-

isolated module whose main purpose is to deal with external clients, and its parent is a

SETL program that sees the crash merely as an end-of-file condition on a file descriptor

(see Section 2.13).

Language designers obey this rule when they pay allegiance to the principle of

orthogonality. Some of my own extensions to SETL were made in this spirit. For

example, any expression may validly initialize aconst, general loop headers may ap-

pear within set and tuple formers, andfor andwhile clauses can appear within a single

loop header. Restrictions on such things as the length of identifiers have no place in a

modern language design, of course.

Language implementers also do well to avoid things like fixed-size tables and in-

commodious integers wherever there is a risk of unnecessarily restricting program size,

147



On Data Processing 5.3 Guidelines

the number of symbols or procedures, and so on.

5.3.3 On the Unexpected

Every programmer makes mistakes, networks and computers crash, file systems over-

flow, resources of every description reach the point of exhaustion sometimes, and

clients present a myriad of surprises, so:

� Expect the unexpected.

Except in safety-critical systems, which require a heavy investment in equipment

and an entirely different approach to software design than what is appropriate for data

processing (essentially to guarantee that every need is always covered by a working

component, and that resource exhaustion absolutely cannot occur), the best way to

maximize reliability in a large distributed system is to layer it, with each module doing

local checks and fielding the failures of lower-level components.

When a check fails, a module’s path of least resistance is usually to throw up its

hands and fail completely but recognizably. The module at the next higher level, usually

a parent process in a program hierarchy, should always be prepared to deal with such

failure, if for no other reason that there are so many ways in which the child process

(say) can fail. Design economy is achieved by routing various types of failure through

a common handling mechanism. In the “Box” pattern embodied in WEBeye, this is

done by having parent processes connected to child processes through pipe or pump

streams. Failure or natural termination of a child process is made known to the parent

148



On Data Processing 5.3 Guidelines

through an end-of-file condition. The parent generally knows or doesn’t care whether

the termination was expected. Serious errors of the kind which “crash” the subprocess

and evoke a complaint from a language processor’s run-time system are also logged.

Note that the parent’s responsibility here is usually to check for an end-of-file con-

dition on each input operation, and take appropriate action, which may simply be to

fail in turn. Even the end-of-file check can sometimes be elided if the parent is a SETL

program that is content to crash immediately upon trying to use theom value ensuing

from a failed read, though this is not very good programming style.

It is not that far, however, from the liberal use of theassertstatement, which is to

be recommended highly even though its only purpose is to abend the program in the

ostensibly impossible case that the assertion fails.

Component failures can obviously lead to a cascade of failures, moving up the

chain of responsibility. Child processes need to be aware that their parents can fail,

and again the path of least resistance is usually for the child to exit when it sees an

end-of-file condition on the communication channel with the parent. Sometimes a

process will want to do some “cleanup” housekeeping before actually exiting. The

exit gracefullyroutine in thevc-exit.setl file (Section A.15) that is textually included

by many components of WEBeye is a fairly extreme example of this, as it propagates

SIGTERM signals to subprocesses in an effort to give them all a chance to shut down

cleanly, but ends up issuing the irresistible SIGKILL to any that do not respond to

the SIGTERM. Conversely, processes in WEBeye that have children strive to remain

receptive to SIGTERM at all times, as is perhaps best illustrated by the use of a routine

149



On Data Processing 5.3 Guidelines

calledselector exit on sigtermthroughoutvc-seq.setl (Section A.39).

At some level, in a good design, a cascade of failures will reach a module which

attempts some form of recovery. The main advantage ofnot being overzealous in rid-

dling lower-level modules with recovery code relates to the variety of possible failure

causes in real systems: unless the failure has a very specific and immediately recover-

able cause, the best chance for a “clean slate” upon which to bring the failed part of

the system back up will be engendered by clearing out the failed incarnation as com-

pletely as possible. This is especially true if the root cause of the failure was resource

exhaustion, one of the most unpredictable and problematic failure modes—the very

act of removing a large subtree of processes in such circumstances may be the most

important part of the recovery itself, as it frees up a large quantity of vital resources.

5.3.4 On Clients

The sequence of server examples presented in Sections 3.2 and 3.3 implicitly suggested

the rule:

� Never trust clients.

Often it will be the case that a child process appointed by a server to deal with

a client will have numerous responsibilities, and protection against denial-of-service

attacks through resource exhaustion can simply be part of the child’s natural propensity

for crashing on conditions it cannot handle.

150



On Data Processing 5.3 Guidelines

But sometimes the child process is interposed purely for protection at the commu-

nications level. Let us now examine a couple of general-purpose child processes that

can be used by any server for safe line-by-line communication with any client.

The model, as always, is that it doesn’t matter if the child process crashes, but it

matters very much if the server crashes or is blocked in an I/O operation other than

its mainselect. Hence the server should not even try to read something as seemingly

innocuous as a single line directly from a client, because the client could send part of

the line and then pause indefinitely. Similarly, the server should not send a line directly

to a client, because the client could absorb part of it and then block.

To handle the input side of a connection to a newly accepted client having file

descriptorfd, the server can use the following trivial program, which merely copies

lines fromstdin to stdout, flushingstdout after each one:

tie (stdin, stdout); -- auto-flushstdout on each read fromstdin
while (line := getline stdin) 6= om loop -- read line or EOF indication
putline (stdout, line); -- write line (and auto-flush)

end loop; -- loop ends when EOF reached

If this program is namedline-pipe.setl, the server can start it as an intermediary between

itself and the client as follows:

fd in := open(‘exec setl line--pipe.setl <<<&’ + str fd, ‘pipe--in’);

Notice that the shell has been used to redirect input fromfd into the child process’s

stdin. Now whenever this child receives awhole linefrom the client, it writes it out to

its ownstdout, which is connected by a pipe to the parent’sfd in. Whenever the parent

151



On Data Processing 5.3 Guidelines

(the server) is ready to receive input from the child, it can read the whole line at high

speed through this pipe. Typically,fd in will be one of many file descriptors in a set

passed toselect, and the child’s attempt to write the line to its parent will causeselect

to wake up and returnfd in in a set of “ready for reading” file descriptors.

On the output side, matters are not so simple. One might reasonably expect that the

same little program could be started by the parent using

fd out := open(‘exec setl line--pipe.setl >>>&’ + str fd, ‘pipe--out’);

since if the parent waits forfd out to become “ready for writing” before sending it a

line, then it can do so in the certain knowledge that the child will accept the whole line

at high speed, no matter how long it takes for the child to send that line along to a slow

(or even indefinitely blocking) client.

But here we run into an annoying fact about Unix pipes (a fact which is usually quite

welcome from the performance point of view): that they can be filled “to capacity” by

a sender in advance of the receiver being ready to receive even one byte. The result is

that from the point of view of senders, receivers appear to be ready to receive before

they really are. In the present case, this means thatline-pipe.setl may appear to be

ready to receive a line of data from its parent when in fact it is in the middle of doling

a previous line out to an arbitrarily slow client.

A solution to this problem is to use a sending child process which gives its parent

an explicit indication when it is truly ready to receive a line:

fd := open(val command line(1), ‘w’); -- get fd from command line

152



On Data Processing 5.3 Guidelines

tie (stdin, stdout); -- auto-flushstdout on each read fromstdin
while (line := getline stdin) 6= om loop -- read line or EOF indication
putline ( fd, line); -- write line to remote client
flush ( fd); -- flush client output buffer
putline (stdout, ‘’ ); -- tell parent we’re ready for more

end loop; -- loop ends when EOF reached

If this program is namedline-pump.setl, the parent can invoke it thus:

fd out := open(‘exec setl line--pump.setl ---- ’ + str fd, ‘pump’);

Notice that fd out here is actually a bidirectional file descriptor, and thatfd is not

redirected by the shell but instead identified on the child’s invocation command line

and inherited. The parent must now wait forfd out to become readyfor readingand

clear that indication by reading the empty line fromfd out before sending any line (on

fd out) after the first one. (An obvious slight variation on this parent-child protocol is

to have the child send the parent an empty line initially as well, so that every write by

the parent, including the first, has to be preceded by absorption of the empty “clear to

send” line.)

Once the parent has opened bothfd in and fd out, it is free toclose( fd). The

actual network connection will not be closed until both child processes have released

it, which a cursory inspection ofline-pipe.setl andline-pump.setl shows will not happen

until they both terminate.

When a process tries to write through a pipe or pump stream to a process that has

terminated, a PIPE signal is sent to the would-be writer. This signal can also be gener-

ated by attempted output to a TCP connection that has been closed by the peer, though

153



On Data Processing 5.3 Guidelines

the semantics are a little more complex (the error indication will only be generated after

thesecondlow-level write to such a stream). Normally, SIGPIPE causes silent termi-

nation of the process, though this behavior can be overridden in the usual way through

a call such as

open(‘SIGPIPE’, ‘ ignore’);

The process which does this should also normally check for errors on all output opera-

tions to pipes, pumps, and network connections:

clear error ;
putline ( fd, . . .);
flush ( fd);
if last error 6= no error then
-- output error has occurred
...

Clearly, this is a messy business, and best avoided.

Another advantage of usingline-pump.setl, in addition to endowing servers with a

simple output flow control mechanism, is that it assists servers in just such avoidance—

it eliminates their need to consider PIPE signals explicitly. If the child process goes

down on a SIGPIPE, the parent merely receives an end-of-file indication from the child.

The situation we have here is that the parent (server) always waits for the child to

declare its readiness to receive a whole line. The child will not at that point be trying

to write to an adversarial client, so it will not itself cause a SIGPIPE to be sent to the

parent.

154



On Data Processing 5.3 Guidelines

Let us now complete this picture. The parent that is communicating with a client

through the two processes just reviewed should check for an end-of-file condition on

fd in whenever it becomes “ready for reading”. The same is true forfd out, which is

bidirectional despite its name. This can be done in the usual way such as by checking

for anom return fromgetline or by interrogatingeof after ageta. An end-of-file from

fd in will usually mean that the client (or its host, or the network) has closed the con-

nection. An end-of-file fromfd out is less likely to be normal behavior, but essentially

means that a dropped connection has led to theline-pump.setl child terminating on a

SIGPIPE. In both cases, the parent can finish by executing the following code:

kill (pid ( fd in)); -- send SIGTERM to input subprocess
kill (pid ( fd out)); -- send SIGTERM to output subprocess
close( fd in);
close( fd out);

One or both of thekill calls will be redundant but harmless here. The case where akill

is not redundant is where the client has left one side of the connection (input or output)

open but blocking. Thekill makes sure that the child process is not trying to complete

an input or output operation while the parent is left waiting for it to exit—closeon a

pipe or pump stream involves a low-levelwait, which can be indefinite if the child is

blocked.

155



On Data Processing 5.3 Guidelines

5.3.5 On Aliases

Memory management, even when low-level allocation is hidden from view, is always

an issue: one of the decisions a programmer repeatedly has to make is whether to copy

or merely to reference. Most languages make it easier to reference than to copy. This

is only natural considering that languages have traditionally been designed from the

machine upwards, because it usually takes less CPU time to copy a pointer than to

copy the data it points to. But the effect at the application level is that programmers

tend to code for copying only if it seems necessary.

And as a result, they all too often produce “pointer spaghetti” which ultimately

leads to bugs in which aliases are mistaken for unique pointers, blocks are deallocated

prematurely, and pointers fail to get updated when their referents are moved.

SETL, on the other hand, encourages copying with its so-called “value semantics”.

There is no way to create an alias in SETL in the usual sense of more than one vari-

able referring to a single object, nor are there pointersper sein SETL. Assignment,

including both directions of parameter passing, is defined as a full copy of the object

regardless of whether it is a simple number or a vast and complex map. (Of course, im-

plementations are free to optimize out the actual copying, using, for example, a copy-

upon-change regime.) To emphasize this orientation, I usually speak not of SETL

objects, but of SETL values, except where it is actually necessary to distinguish be-

tween a value and its machine representation. The closest thing to a pointer in SETL

is a value that serves as a “key” or domain element in one or more maps. Each map

156



On Data Processing 5.3 Guidelines

plays the role of a memory, and the map’s name has to be mentioned on every fetch or

store. Because a value of any type can be a key, maps are fully associative memories

with unbounded address (key) spaces. Where the key space is naturally a dense set of

small positive integers, a tuple can serve as the map/memory.

In short, SETL pushes programmers gently but firmly in the direction of the salutary

rule:

� No unnecessary aliases.

And when aliasesarenecessary, SETL insists that they be referenced to specific maps.

The effect on programs of this bias is far-reaching, and likely to be somewhat dis-

comfiting to people with a LISP background. It is a major paradigm shift. Whereas

LISP focuses on the map element (the ordered pair, or “cons” cell), SETL treats the

whole map, and does so with considerable regard for human syntactic needs. This rep-

resents a significant elevation in the semantic level, which is perhaps not surprising—

pure LISP is, after all, nothing more than a machine language for a tiny recursive

interpreter.

This “anti-alias” recommendation, however, though I believe it to be highly ap-

propriate for virtually all data processing programs, is not always good for systems

programming. It is hard to imagine a tree manipulation package or operating system

kernel written in C without pointers or Ada without access types.

157



On Data Processing 5.3 Guidelines

5.3.6 On Accessibility

Avoiding bottlenecks, and providing helpful redundancy in the form of doublechecks

and assertions, as well as the very sound rules about modularization, abstraction, and

even style that have emerged from the young science of software engineering, are all

just as valid for applications programming and systems programming as they are for

data processing, but there is another, much humbler rule which is particularly worth

following in the specific context of data processing:

� No unprintable data.

In other words, all data that passes between data processing programs should be

represented in a form that will be displayed by the most basic tools such as text editors

and printers in “natural” denotations, unless there is some compelling reason for not

doing so. There was, a long time ago, some justification for “binary” formats, which

can save CPU time, disk space, and communication bandwidth, but as of well before

the 1990s, these are trivial, inconsequential benefits at the data processing level when

weighed against the inconvenience of data that can only be viewed through special

filters. Of course, wherever formats are predefined, this rule cannot necessarily be

followed, and insofar as browsers are now basic tools for displaying data, this rule does

not necessarily mean that everything should be constrained to the “printable” part of

ASCII (strictly speaking, theprint class of characters in the POSIX locale defined in

Unix 98 [154]), though this is probably still desirable for all but image data (and even

for images is sometimes the best choice).

158



On Data Processing 5.3 Guidelines

SETL actively supports the bias in favor of printable data. It has a good repertoire

of facilities for deciphering and formatting arbitrary values as strings (Section 2.14.2),

it features thepretty operator (Section 2.14.3) which produces printable strings exclu-

sively, and the general output routines render values legibly except that they do not

interfere more than necessary with the contents of strings. Routines such asgetchar,

getfile, putchar, andputfile do not interfere with them at all, ensuring that any bit

pattern can be read or written if necessary. In the case where pure SETL programs

are exchanging data,writea andreada can be used as perfect reciprocals, making the

data stream an ideal place to probe for testing or instrumentation purposes. Similarly,

if programs are designed to communicate using a line-by-line protocol, typically in-

corporating some simple command language,printa can be used for formatting and

sending messages to a correspondinggeta, which will receive each message as a whole

line before parsing and interpreting it. This mode of operation is especially appropriate

for communication with servers, which usually need to be able to defend themselves

against miscreant clients. A primitive tool such as the generaltelnet TCP client can be

used to perform some basic tests on such a command-oriented server.

5.3.7 On Program Size

Because even large, complex data structures are just values in SETL, they can be passed

from one SETL program to another with consummate ease by the primitivewritea and

readaoperations just mentioned. This further facilitates the division of labor into many

159



On Data Processing 5.3 Guidelines

small programs instead of a few large ones, and hints at the rule:

� No monster programs.

The nature of modern data processing, to the extent that it involves piecework done

by programmers with a flexible attitude towards languages and configurable off-the-

shelf software, pressures programs to be small. Conversely, the affordability of large

populations of processes on modern hardware removes the efficiency obstacle to treat-

ing programs as a plentiful resource. Furthermore, the relatively high walls of protec-

tion provided by modern operating systems around processes suggests that programs

themselves may be ideal as modules or even “objects”. Indeed, what practitioners of

object-oriented programming now speak of as a method call was originally defined

literally as a message-passing operation [185, p. 438].

There are numerous advantages to the use of programs as the fundamental modules

in data processing systems. First, each program can be written in whatever language

is most appropriate for it—even “call-out” conventions usually constrain the choices

severely in the single-program case. Second, independent threads of control help to

avoid bottlenecks, and to ward off the syndrome of a single program trying to juggle

multiple activities. Third, shared resources tend to be guarded by their own supervisory

processes rather than being carelessly managed by global variables (though of course a

careful programmer would make such things private to a package and accessible only

indirectly through subroutines). With regard to the latter, the motivation to copy rather

than reference data is clearly strong in the setting of “fullweight” processes—resources

160



On Data Processing 5.3 Guidelines

will only be shared if they need to be.

5.3.8 On Standards

It goes without saying that adherence to recognized standards such as the Internet pro-

tocols and HTTP/MIME is a compatibility prerequisite for practically any new piece of

software that hopes to deal with the global public network, and that confining it to use

the API, shell, and utilities defined by Unix 98 [154] and Posix [118, 119, 117] where

feasible will lend it a high degree of portability.

But there are also some other specific rules which should always be followed unless

there is some compelling reason not to. These are rules that have become established

practice because they work well.

5.3.8.1 Port Number Independence

As recommended in Section 3.1.3 and illustrated in Section 4.2, servers should strive

to be independent of any specific TCP or UDP port number. To do otherwise is to risk

making it impossible for a service to be offered at all, which will happen if the port

number is already in use by another program. This condition can persist indefinitely, as

is likely if the other program is itself a server. If a server critically depends on obtaining

a certain port number, and some fundamental servers do (e.g., Web servers), then the

port number should at least be registered with the IANA [116], though even this is no

guarantee of its availability. Such a server’s chances of getting the port number it wants

161



On Data Processing 5.3 Guidelines

will be further improved by having it started soon after its host comes up, perhaps as

part of the system initialization sequence.

5.3.8.2 Configuration and Installation

A little effort on the part of the software developer to make a package easy to configure,

install, and maintain can save every person responsible for installing and administer-

ing it a significant amount of trouble and vulnerability to mistakes. This is true for

any software package, but especially so for large and complex systems that require

configuration decisions to be made by the installer.

In this regard, perhaps the most important rule is to provide a step-by-step instal-

lation procedure that offers reasonable defaults and an opportunity to override them,

together with clear documentation on the places where the software package impinges

on the target platform. An installation script can be quite helpful.

A good principle to follow is to try to minimize, within reason, the number of

dependencies on specific files or other resources in target systems. So, for example,

although a software package may comprise a large number of programs and configura-

tion files, they should by default all be grouped under a directory whose name serves

as a common prefix, if practicable. Then this prefix, together with any particular sys-

tem files that need to be inserted or modified, will be the entire extent of the package’s

“footprint” (apart from the space and time it ultimately consumes, of course).

One convention deserves special mention where servers are concerned, and that is

the matter of how to make them sensitive to configuration changes without requiring

162



On Data Processing 5.3 Guidelines

them to be stopped and restarted. Fortunately, the Unix tradition has an answer to

this question: make the server accept SIGHUP (the “hang-up” signal) as a request to

re-read the configuration data. For example,inetd (the so-called “super-server” that

is running on virtually every Internet-aware Unix host) re-reads its configuration file,

/etc/services, whenever a HUP signal is sent to it.

For a server structured as an event loop, as in Section 5.3.8.3, this behavior can

be easily implemented by including a HUP signal stream among the file descriptors

passed on the mainselectinvocation.

5.3.8.3 The Event Loop

Any SETL program that waits nondeterministically for inputs from more than one

source will do so by callingselect. For example, even the simple servervc-snap.setl

listed in Section A.41 and discussed in Section 4.2.1 is typical in maintaining a map

from pump file descriptors to client records. Each pump stream is connected to a child

process that deals with one particular client. The domain of the map, i.e. the set of

pump file descriptors, is passed toselectalong with the the file descriptor of the socket

that listens for new client connection requests. Again, this is an entirely typical arrange-

ment, where the server delegates all long-term work to subprocesses and gets back to

its main job, sleeping in aselectcall, as quickly as possible. If the server had other

events to be concerned about, such as HUP signals telling it to re-read configuration

data, or timers telling it to do some periodic checks, the file descriptors for those signal

or timer streams would also be included in the set passed toselect.

163



On Data Processing 5.3 Guidelines

Personally, I find myself most comfortable withselectappearing naked in an overt

main event loop, but the sensibilities of those who prefer the “callback” style of pro-

gramming can easily be accommodated too. Supposefd map is a global map from

pump file descriptors to records, each of which contains ahandlerfield designating a

unary event-handling routine, andfd ready is a global set-valued variable. Then the

SETL main program, if the programmer so wishes, can consist of nothing more than

some initialization and a final call to a routine such as

proc processevents;
var fd; -- local
loop -- cycle until some event-handling routine executes astop
[[[ fd ready]]] := select(domain fd map);
-- The setfd readyis rechecked on each iteration:
for fd in fd readyjjj fd in fd readyloop
call ( fd map( fd).handler, fd); -- indirect call

end loop;
end loop;

end proc;

which could be incorporated verbatim into programs using#include, preceded if de-

sired by#definelines that renamefd mapand/orfd ready.

“Registering” an event-handling routine named (say)client input could be done

with

register( fd, routine client input);

where the procedureregisteris defined as follows:

164



On Data Processing 5.3 Guidelines

proc register( fd, callback routine);
fd map( fd) ?:= fg; -- establish new record if necessary
fd map( fd).handler:= callback routine;

end proc;

“De-registering” a callback routine via

deregister( fd);

might then be done by the following procedure:

proc deregister( fd);
fd map( fd).handler:= om; -- caller may now remove whole record
fd readyless:= fd; -- removefd from transient ready set

end proc;

The usual cautions about manipulation of global variables apply here: callback

routines must be sensitive to what other callbacks might do to those variables. This is

why processeventshas the odd-looking loop header “fd in fd readyjjj fd in fd ready”,

which inspects the same globalfd readyset asderegistermodifies. This loop header

makes sure that eachfd produced by the first “fd in fd ready”, which iterates over a

copyof fd ready, is still to be found in the global variablefd readybefore the corre-

sponding loop iteration occurs. If it is not there at that time, a previous iteration has

de-registered the file descriptor and its associated event handler fromfd map, and it

would then be inappropriate to try to call that event handler.

It may appear at first glance that this circumstance could be dealt with more grace-

fully simply by guarding againstfd map( fd) or fd map( fd).handlerbeingom, but this

165



On Data Processing 5.4 Summary

would offer no protection against the case where a file descriptor, retired by both a call-

back and by acloseexecuted by that callback, reappeared on a subsequent callback’s

open—indeed, Unix will always yield the most recently closed file descriptor on a

system-levelopen call. This file descriptor could then be mistaken for its older incarna-

tion, and inappropriate processing performed on it. Since it is really a new file descrip-

tor that has not yet entered the set of candidates supplied toselect, the appropriate pro-

cessing for it is none at all, at this point. Notice that performing “fd readywith := fd”

in register, perhaps in a fatuous appeal to symmetry withderegister, would be exactly

equivalent to making this oversimplification.

In WEBeye, where each main server loop typically has aselectcall over at least

the domain of aclientsmap and a listening server socket, these semantic subtleties are

kept at bay by adhering to the principle that in the code following the return fromselect,

operations which may shrink theclientsmap precede those which may expand it. For

example, tests for input from existing clients, which cause shrinkage of theclientsmap

when clients terminate their connections as indicated by an end-of-file condition on the

input file descriptor, are placed before the test for newly connecting clients, which can

increase the size of theclientsmap.

5.4 Summary

This chapter has tried to make the case for the use of a high-level language in Internet

data processing, by enunciating what I feel to be useful rules of software design for this

166



On Data Processing 5.4 Summary

kind of environment and by indicating how SETL, in particular, supports a software

engineering methodology which obeys them.

167



Chapter 6

Conclusions

The strengths of SETL as a data processing language follow largely from its proper-

ties which (1) make it a good language for high-level algorithm description and pro-

totyping, (2) encourage adherence to the programming guidelines given in Chapter 5,

particularly the one which advocates employing plenty of processes, (3) reflect typical

data processing environments through a convenient predefined interface to the most

commonly used parts of Unix 98, and (4) allow SETL to serve as a highly competent

“glue” language [156] for interconnecting programs written in other languages.

The case study of Chapter 4 has shown how the general-purpose SETL I/O facili-

ties, operating system interface, and miscellaneous extensions described in Chapter 2

work with the sockets-based network support described in Chapter 3 and the modular-

ity of small, high-level programs to produce a system that is comprehensible, robust,

and maintainable.

168



Conclusions 6.1 Other Systems

In this concluding chapter, I will review a few other such systems, and then discuss

some needs which have become apparent, particularly in the area of types.

6.1 Other Systems

I have written many server systems in SETL to date. Most of them have been small

and even trivial, which is as often desirable in a server hierarchy (Box) as in any other

system. Others have necessarily been larger.

For example, one Box which is of intermediate size is the PWM Toolkit. Its “busi-

ness end” sends commands on a serial line to a program in a PC-cum-microcontroller

which generates effective-voltage control signals on any subset of the pins of a paral-

lel port by direct pulse-width modulation (PWM), i.e., by carefully timed, very rapid

toggling. It has been used to drive the spherical pointing motor [26, 25] through an

H-bridge switch.

The PWM Toolkit supports several possible methods and modes of signal gen-

eration, some of which involve dependencies between pins. Besides controlling the

various basic quantitative parameters of PWM, the toolkit can generate time-varying

envelopes, including some cyclical patterns with their own parameters such as maxi-

mum, minimum, frequency, and phase.

The PWM Toolkit may be used bytelnet clients (it has a command-line interface

with ahelp command) or more conveniently by a GUI client, which uses the command-

line interface to the server but presents to its user a master window and zero or more de-

169



Conclusions 6.1 Other Systems

tail windows that depend on selections made through the master window. The windows

themselves are all created and governed by awish shell process that reads dynamically

generated Tcl/Tk [184] command scripts.

The widgets created by these scripts are originally specified by templates consisting

of nested tuples in a SETL program, where the horizontal or vertical layout of GUI

elements at a given nesting level is controlled by whether the level is even or odd. The

wish process is attached to the SETL program through a pump stream. The Tcl/Tk

commands are issued by the SETL program on this stream to build, destroy, and update

widgets based on inputs from the user and from the PWM Toolkit server. Each widget,

whenever the user manipulates a control, sends information to the SETL program on

the pump stream by writing a short message to what the widget sees as the standard

output stream of thewish process—this is the main way the SETL program receives

user input, although it also keeps a debugging stream open for users to enter arbitrary

wish commands, which it merely passes along. Web clients using an interface known

asLogEye[17] to view a foveated “log-map” image also implicitly communicate with

the PWM Toolkit server when controlling the effective pan and tilt voltages supplied

to the spherical pointing motor on which LogEye’s miniature videocamera is mounted.

All clients which have issued thenotify command to the server receive notice of all

parameter changes. The GUI clients automatically issue this command on startup,

which has the interesting and useful effect of causing all the sliders and other controls

associated with these clients to change state automatically (in real time, from the user’s

point of view) when other clients modify parameters through their controls. It is even

170



Conclusions 6.1 Other Systems

possible for two users to get into a tug of war by dragging similar controls in opposite

directions. This keeps the server rather busy changing parameter values, but causes no

real harm except perhaps to a hardware device that has difficulty with rapidly changing

effective voltage levels.

The LogEye system just mentioned and another Web-interfaced service I wrote

called LabEye[16] are in some respects similar to the WEBeye of Chapter 4, and

antedate it. They cannot really be described as simpler than WEBeye. LogEye, for

example, has the ability to manage, filter and cache a variety of live and stored image

streams simultaneously, and features a calibration procedure for interpolating the PWM

values that should be used for aiming a videocamera based purely on convolving image

samples corresponding to various PWM settings. LabEye allows the user to control and

view patterns on an oscilloscope and two bi-color LEDs using a browser interface to a

server which indirectly commands a BASIC Stamp [167] that in turn controls a circuit

of my own construction. These systems have acted as proving grounds for many of the

SETL-based, process-intensive techniques outlined in this dissertation.

Richard Wallace has also used the Box approach in the SETL prototype of his AL-

ICE [206] artificial-intelligence conversationalist. Its primary interface was through a

Web browser which communicated with a server written in SETL. That server spawned

a child process to read client input and send MIME-wrapped HTML code in reply, just

as thehttpd interface of WEBeye does. In the best modular tradition of Boxes, the

original ALICE made use of filters and pump streams invoked from SETL, and of an-

other server which did the main work of natural-language processing. Some user input

171



Conclusions 6.1 Other Systems

strings were interpreted as commands to move a videocamera, so ALICE also played

client to the camera-control server side of LogEye, and embedded a reference to the

video server aspect of LogEye in the HTML sent to the client browser, in order to serve

the user a picture (usually a live one), a textual response, and a prompt for more input.

The idea of embedding, in the HTML sent to a client presumed to be a browser, a

reference back to the server which generated that HTML (or at least to a server which

is in turn a client of that HTML generator) is used by WEBeye, LogEye, LabEye, and

ALICE. In fact, this kind of self-reference, in an imagemap, was used in the original

LabCam at NYU. It is similar in spirit to the use of a CGI script, but bypasses the need

for a full-fledged Web server to be involved at every step of what is often a fairly long-

term interaction. The general principle is appropriate whenever a Web page is designed

to lead the user to a similar page one or more times.

My use of SETL for processing Web-based requests began with CGI scripts, and I

feel it is still useful in that role. For example, the rudimentarycomp.lang.ada interface

service [14] I wrote when visiting Alfredo Ferro and his colleagues in Catania in 1994

was not only moderately useful in the rather speed-limited network environment that

prevailed there at that time, but was also one of the earliest tests of “sockets for SETL”

as I termed the first, TCP-only version of the current set of SETL library extensions for

network programming.

The “Famous Original” SETL Server [13] that has been accessible through my

home page [15] for several years is not actually a server at all in the TCP/IP sense,

but simply a rather general CGI script which allows any user to run a SETL program

172



Conclusions 6.2 Interoperability

by entering it directly into a text sub-window on a Web page or by giving a URL at

which the program can be found. Similarly, run-time inputs to the SETL program can

be supplied in either of these two ways. Since the SETL program runs on the Web

server host or a delegate thereof, it is run in a restricted mode which prevents server-

side abuses such as the clobbering of arbitrary files. The administrator of the SETL

Server can allow guest programs some latitude in opening client sockets, however,

by configuring a set ofhost:port combinations that foreign programs are allowed to

connect to. This is mediated by the support for the secure restricted mode that is built

into my SETL implementation.

6.2 Interoperability

By far the most important kind of interoperation between code written in different

languages is that which occurs when the the pieces of code are in fact entirely separate

programs, linked only through some communication medium. This is especially true

when processes are an abundant resource within easy reach, and is such a powerful and

generalmodus operandithat I find it tends to remove most of the need for subroutine-

call interoperability between high-level languages like SETL and lower-level languages

like C.

This is largely because of the differences in data representation between languages

of unequal level. These differences require data conversions, which introduce the po-

tential for error, inefficiency, and clutter. The conversions must occur even if the inter-

173



Conclusions 6.2 Interoperability

face is call-based rather than I/O-based. Conversely, if interfaces are kept narrow where

practicable as a fundamental design principle, the high walls between processes are a

welcome form of protection: memory corruption by a SETL program running under a

correct interpreter is impossible, but no such guarantee can be made if an arbitrary C

library is linked in. Furthermore, where a language split is already countenanced for

the sake of access to some optimized low-level code, a process split allows the CPU-

intensive computation to be moved easily to a different processor, perhaps one that is

much faster than the user’s workstation.

However, there are occasions when it is genuinely useful to be able to use a prede-

fined library of C, Fortran, or Ada routines directly from SETL, typically for graphics.

Usually one does not really wish to write new code in the foreign language in such

a case—otherwise one does well to write it in the implementation language of some

SETL interpreter, and integrate it there. More likely is that one just wants to have an

interface to the library in terms natural to SETL. The question then arises: how much

effort is it worth to build a “thick”, SETL-oriented binding to this library compared

to the nearly mechanical generation of a “thin” binding which may require consider-

able accommodation of the library’s needs by the SETL programmer? The answer will

depend on how transient the need for that particular library is judged to be.

In 1990, Jack Schwartz had an indefinitely transient need for the facilities of the

Macintosh Toolbox, which even then contained over 1000 routines. SETL2 was ported

to the Mac, but multiple processes in the standard environment for that platform were

not to be available for many years to come. Jack therefore enlisted my help in gener-

174



Conclusions 6.2 Interoperability

ating a thin SETL2 interface to the Toolbox. The SETL2 callout interface was exceed-

ingly primitive (all calls had to be routed through a single routine), and Kirk Snyder

staunchly refused to allow anyone else access to the SETL2 source code in those days.

Partly for these reasons, but mainly due to the fact that there were a great many parame-

ter types, all needing conversions of one kind or another, the C part of this interface was

quite bulky, running to some 16,000 lines of mechanically generated code. The SETL

programs and other scripts I wrote to generate the interface had the helpful redundancy

of Pascal “header” files (source files containing declarations meant to be incorporated

into user programs). The C header files did not by themselves convey enough infor-

mation to distinguish value parameters from result or value-result parameters when an

asterisk (indicating a pointer) appeared, but the appearance ofvar in the corresponding

Pascal declaration supplied the needed discrimination in all but a few special cases.

Nowadays, good discipline in C headers calls for the use ofconst to allow program-

mers to make this distinction at a glance, but this was not common practice in 1990, at

least not among the authors of the Macintosh Toolbox.

This was the first of several SETL2 and later SETL interfaces I generated over the

years. The Griffin group once even had me generate a SETL2 interface to the X graph-

ics library. Eventually these generators led to what is now a reasonably civilized proce-

dure for customizing my SETL interpreter with thin interfaces to libraries described by

C headers. The only such interfaces I have personally found useful to date have been

for graphics libraries, such as GLUT/Mesa, which implements a simple event-based

windowing system together with an essentially complete realization of OpenGL.

175



Conclusions 6.2 Interoperability

The customization procedure will never be fully automatic, because not all the in-

formation pertaining to a library interface is contained in the C header files. Some

decisions about the correspondence between C structures and SETL objects have to be

made consciously. The goal of customization is principally to extend the SETL library,

but except where a very thin interface is acceptable (which is rare), the goal is also

to produce a SETLpackagecontaining “wrapper” routines and other definitions. The

work done by the customizer culminates in the production of aMakefile and associated

scripts that build files which fit into the structure of the SETL distribution package in

such a way that the inclusion of the customization can be selected at configuration time

preparatory to compiling and installing the SETL system.

Recently, in a similar vein, a fairly powerful package called SWIG (Simplified

Wrapper and Interface Generator) [24] has been developed by Dave Beazley for the

purpose of generating interfaces between a number of languages and C/C++ functions

(and variables), again based on information found in the kind of C/C++ declarations to

be found in header files. Currently, the scripting languages Tcl/Tk [184], Perl [155],

and Python [201] are fully supported by SWIG, and there is partial support for Eiffel,

Guile, and Java.

Of course, even the best customization procedure orad hoc interface generator

cannot ultimately be as good as a properly formalized foreign-language interface. The

requisite sublanguage must be able to describe external entities precisely, and to spec-

ify how to translate between them and SETL entities. Since low-level languages often

deal directly in representations of low-level scalar types and memory layouts, the sub-

176



Conclusions 6.2 Interoperability

language must accommodate these, and observe the restrictions that attend them.

Of all the languages currently in use for systems programming, Ada 95 stands out

as the only one able to express such specifications in a way that is simultaneously

convenient, comprehensive, and precise. Accordingly, I would make the following

proposal.

SETL is badly in need of a respectable implementation, yet it is a small and se-

mantically straightforward language. I believe that the ideal way to write a formal

specification for it would be to describe each of its syntactic constructs as expansions

into Ada code, and to describe each of its run-time objects using Ada specifications.

These two bodies of description obviously dovetail, and the “meta-rules” which are

developed to discipline them will form a good basis for describing SETL extensions,

including foreign-language interfaces.

The interfacing sublanguage should nominally fit into the style of SETL, but since

Ada is well suited to this kind of descriptive role, the SETL forms ought to translate

rather directly into Ada.

In fact, it is reasonable to contemplate an “in-line Ada” construct for SETL if Ada is

to play such a central definitional role. I have some relevant experience in this regard, as

a system I built several years ago called SETL/C++ was a successful though not entirely

satisfactory implementation of SETL which used C++ to describe all SETL objects. It

had an “in-line C++” feature, which worked perfectly well but was somewhat hard

on the eyes. More unsatisfactory was the relative weakness of C++ as a specification

language, though I was ultimately able to make the templates etc. do my bidding. But

177



Conclusions 6.3 Types

in practical terms, the greatest obstacle to having SETL/C++ take over from the well-

worn, C-coded, interpreter-based SETL implementation I still use was the unreliability

of C++ compilers, a problem that continues to this day. Ada, on the other hand, is

probably the most ideal interface specification language in existence, and GNAT [1]

is much more robust than any C++ compiler currently available, so perhaps it is time

to let Ada repay SETL for Ada/Ed by using Ada/GNAT to specify and implement the

world’s first truly robust SETL system.

6.3 Types

There is probably no area in which the advantage of using Ada as a specification lan-

guage for SETL is more clear than in the area of types. First of all, let me make the

general observation that the design of types requires a much higher degree of care and

professional experience than virtually any other aspect of program design. This has

been evident time and again in the parade of versions of the Java API, the C++ stan-

dard library, and even some of the Ada packages that have appeared over the years,

especially generics.

Types play a pivotal role in any large system. They are at the core, and much

depends on them—they are in many ways the foundation, and I think their centrality

makes it fair to consider their design to be in the realm of systems programming rather

than applications programming.

SETL, on the other hand, belongs very much in the sphere of applications and, as I

178



Conclusions 6.3 Types

have tried to illustrate in this dissertation, is best suited to small programs. Furthermore,

its maps and even its tuples serve, however informally, the main purpose of types, which

is to package data objects. On their own, maps and tuples do not support formalized

abstraction, but the fact that they are values makes them very convenient packets to

pass among the routines which do embody an abstraction.

The foregoing helps to explain why the absence of a type system in SETL has been

less uncomfortable than it would be in a language like Ada, which aims to support

programming in the large at both the systems and the applications level. We see a

similar phenomenon in textbooks on algorithms, where the focus is on mechanisms

rather than on organizing large bodies of code. Variables are often not even declared,

since (for example) seeingA(i) immediately tells us thatA is a map, perhaps an array,

the presence of andR.a indicates thatR is an object with an attributea, perhaps a

record. The genericity in expressions likeA(i) extends also to scalars, where in fact

it often does not matter what kind of numberx is, or even whetherx is a number at

all. The reader can then take an appropriately abstract view ofx until x is seen to be

involved in arithmetic or some other expression requiring more specificity.

Still, it is unfortunate that SETL follows the tradition of textbooks to the point of

making it difficult to manage a program of significant size, and a non-intrusive type

system for SETL would be welcome.

To me, there are two main aspects to how this might be done. One is that type

declarations, even when they become available, should remain optional, but it is very

important that the compiler and the human reader of a given program unitP come to an

179



Conclusions 6.3 Types

understanding aboutP right from the outset: ifP is markedstrong, then every variable

and formal parameter inP must be declared, but ifP is markedweak (the default),

then any undeclared variable is implicitlyvar, just as in the current SETL. Program-

mers writing new code would of course be gently encouraged to declare their program

unitsstrong to gain the advantages of type checking and possible run-time efficiency

improvements, except in cases where this would add more clutter than perspicuity.

The second aspect of non-intrusiveness is that the introduction of a SETL type sys-

tem should not rob the language of its essential simplicity. This is why I have been

at some pains to point out that the design of “core” types is a challenging systems

programming activity, and why I began this section by asserting that Ada has advan-

tages as a specification language for SETL. I think the extreme position of introducing

new types into a SETL programonlyby slipping into Ada or very Ada-like declarative

forms is defensible, and that the ideal approach is not far from that extreme.

However, I feel that SETL should at least acquire some simple forms for defin-

ing and extending record types, and for specifying subtypes via Ada-like constraints.

These forms should have obvious transliterations into Ada. It is difficult to say more

at this stage, except that we should be strictly guided by need in order to avoid invent-

ing myriad declarative forms for SETL of marginal utility. A good starting point is

perhaps to add nothing more to SETL than the ability to state that a given type named

T is described by a piece of Ada code somewhere. WhetherT is tagged (perhaps all

types visible to SETL should be), limited private (perhaps no types visible to SETL

should be), etc., and what operations onT are described by Ada routines, could all

180



Conclusions 6.3 Types

conceivably be specified in pure Ada. IfT meets the requirements of a SETL type,

which could be quite restrictive and stereotyped, doubtless including some uncheck-

able and even unstated semantic promises, thenT can be admitted to visibility at the

SETL level. There are some operations which apply to all SETL types (like thetype

operator), and undeclared SETL variables will always be able to change their types

dynamically, notwithstanding the fact that part of the purpose of a type system will be

to help the programmer constrain and group such chameleons appropriately. Dynamic

dispatching to routines with fully type-constrained formals should certainly be avail-

able. The upshot of the need for these essential features in SETL variables is that they

should all derive from some base ADT in Ada that encapsulates the descriptor, or stub,

together with the operations that all SETL variables inherit.

There are many issues surrounding types that have not been touched on here, such

as (1) the syntax of typed variable declarations in SETL, (2) whether type and variable

declarations need to remain segregated from other statements, or can be integrated as in

Algol 68 and C++, (3) scopes and interactions with package structure, (4) child pack-

ages, (5) generics, (6) inheritance of multiple abstract types, (7) dynamic dispatching

based on multiple argument types, (8) communication of typed values between pro-

grams, and (9) the possibility of representational “hints” along the lines of the old

SETL repr clauses.

181



Conclusions 6.4 String Handling

6.4 String Handling

As remarked in Section 2.14.1, the extensions to SETL’s string slicing and subscripting

forms to allow selections to be made on the basis of patterns described by regular

expressions whenmagic is true, and the functionssub, gsub, mark , gmark, and split,

which likewise accept regular expression patterns, have proven to be very useful in their

own right, butsub/gsuband the assigning formss(p) := r ands(p1.. p2) := r lack the

means to refer to matched substrings conveniently in the construction of replacement

strings.

The way this is done in the standard Unix 98 editing tools, which effectively support

the one-pattern forms (e.g.s(p) := r but nots(p1.. p2) := r), is to take an ampersand (&)

or backslash-escaped zero (\\\ 0) in the replacement string to mean the entire matched

substring, and to take\\\ 1, \\\ 2, etc. to mean substrings that are framed in the pattern

by backslash-escaped parentheses, i.e.\\\ ( and \\\ ), where\\\k in the replacement string

refers to the thekth such framed pattern. The backslash-escaped parentheses are not

themselves matched against characters in the subject string, but can be nested, and are

numbered according to where the left parenthesis begins in the pattern.

SNOBOL [99] and subsequently the MTS [188] editor allow variables to be as-

signed as a side-effect of pattern matching, by providing syntax that associates vari-

ables directly with subpatterns. The “immediate value assignment” form causes these

variables to be assigned during the course of the matching process, while “conditional

value assignment” defers such assignments until matching is complete (and no assign-

182



Conclusions 6.4 String Handling

ment will be made if the pattern fails to match the subject string). There is generally

no practical reason for preferring conditional value assignment, though efficiency was

originally (and probably wrongly) cited. In any case, the resulting values of the vari-

ables are available for use in constructing a replacement string or for any other subse-

quent purpose.

SNOBOL pattern matching is very general. For example, it is fully backtracking,

and deferred-value expressions with embedded function calls can be incorporated in

patterns. There is a whole suite of predefined patterns and pattern-matching functions.

Substring starting positions as well as substrings can be assigned to variables during

matching.

Since regular expressions have already been introduced into SETL and are famil-

iar to Unix 98 users, the ideal pattern-matching facility for SETL will integrate their

use with some SNOBOL-like ability to incorporate matched substrings in expressions

defining replacement strings. Given immediate value assignment into SETL variables,

there should be no need for the rather arcane and error-prone ampersand and backslash

escape conventions of replacement strings in the regular expression regime of Unix ed-

itors, however, since such strings will be able to be constructed by much more powerful

means.

Patterns logically form a distinct type, values of which should be produced by cer-

tain functions and operators.

For example, the exclamation mark (!) might be used as a binary operator that

takes a pattern argumentp on the left and an arbitrary assignment targett on the right,

183



Conclusions 6.4 String Handling

and yields a pattern which, when evaluated in the course of matching, assigns tot

the substring matched byp. This is like SNOBOL’s immediate value assignment. Such

operators should also be overloaded for other types ofp that serve as primitive patterns,

such asstring, ordered pair ofstrings (consistent with the overloading ofsub, etc.),

androutine (a pattern-matching function).

The at-sign (@) might be a unary operator that takes an arbitrary assignment tar-

get t and produces a pattern which matches the null string and assigns tot the “cursor

position” (string index) of the current location of matching. Again, this corresponds to

a SNOBOL primitive operator.

Several primitive functions are also worth borrowing from SNOBOL. For example,

arbno should take a pattern argumentp (or string etc. that can serve as a pattern) and

return a pattern that matches zero or more occurrences ofp. The functionspos and

rpos should each take aninteger argumentn and match the null string if and only if

the matching cursor is currentlyn characters from the beginning and end of the string,

respectively. Unary overloadings ofany, break, len, notany, span, andrany through

rspan, all of which already appear in SETL as binary functions, are also available for

use as pattern-producing functions.

The “unevaluated expressions” of SNOBOL, which are useful in all sorts of pattern-

matching situations, could be approximated readily. With no extra syntax, anytuple

whose first element is aroutine could serve as a pattern in which subsequent elements,

evaluated prior to matching, would be passed as arguments to theroutine when the

pattern was encountered during matching. The asterisk (�) could be given similar sig-

184



Conclusions 6.4 String Handling

nificance as a unary special form when it appears before a global function namef that

might or might not be followed by a parenthesized list of arguments:� f (x1, x2, . . .)

would be equivalent to[[[routine f, x1, x2, . . .]]] except that it would produce an actual

pattern instead of just a tuple that can serve as a pattern. Likewise,� f would be a

pattern equivalent toroutine f or [[[routine f ]]].

The reason for insisting that the arguments intended forf in the foregoing be evalu-

ated when the pattern expression is being constructed rather than when it is being used

in matching is that to do otherwise would be to invite dynamic scope violations: pat-

terns can certainly be constructed and yielded by functions. This is also whyf must be a

globalfunction name (as all function names are in the current version of SETL). The as-

terisk notation could easily be extended to apply to global variables, where it would de-

fer their evaluation until pattern matching time. Nesting, as in� f (x1, �g(�y1, y2), �x3),

is of course perfectly feasible.

Pattern-matching functions yield what they match from the pattern matcher’s point

of view. They also advance a cursor when they succeed. There are several ways in

which user-defined pattern-matching functions could be stereotyped in order to map

to this behavior. For example, the subject string and cursor could always be supplied

as parameters, or they could be predefined variables that the system pushes and pops

when necessary to accommodate pattern matching nested within such a function. The

function could indicate failure by yieldingom and success by yielding the number of

characters matched, or perhaps yield the matched substring itself on success. Alter-

natively, the function could be a predicate, advancing the cursor and yieldingtrue on

185



Conclusions 6.4 String Handling

success, but on failure leaving it alone and yieldingfalse. “Off-the-shelf” predicates

could then be used in patterns to match the null string and allow matching to continue

(success), or match nothing and cause the pattern matcher to back up and seek alterna-

tives (failure).

Existing SETL operator symbols are also overloadable for operations such as pat-

tern concatenation and alternation. Alternation could use a new symbol or overload an

old one, but concatenation should surely be done with “+”, since that is how strings

are concatenated. This raises the slight problem that the plus-sign is also used for tuple

concatenation, and although some tuples can serve as patterns, not all their concate-

nations make sense as patterns. For this reason, and because programmers should be

encouraged to write code that is free from even the hint of ambiguity, there should be a

pat operator that converts its argument to a pattern or helpfully complains.

In expressionss(p) := r, wheres is a string,p is a pattern or equivalent (s(p1.. p2)

may be read ass([[[p1, p2]]]) under this proposal), andr is a replacement string, it is

important to specify something about SETL semantics that was previously left open,

namely which ofs(p) andr is evaluated first. Clearly, if immediate value assignments

in p are to produce values that will be of use in constructing the replacement stringr,

thens(p) must be evaluated first. Note thats was already specified as the very first

part of such forms to be evaluated [181, p. 93], and the last to be assigned. Its value

is effectively copied into a temporaryt initially. Then matching is performed, and

substring replacement is performed ont. Finally the result int is copied tos. In a

complex statement such as

186



Conclusions 6.5 Exceptions

s(p)(i.. j) := r;

which is equivalent to

temp:= s(p);
temp(i.. j) := r;
s(p) := temp;

the expressions(p) is defined to be evaluated twice, and the programmer must as always

beware ofunintendedside-effects. The best policy is to ensure that the side-effects in

s(p) consist of nothing more than assignments which can occur either once or twice

with equivalent effect. This neither runs afoul of the semantic assumptions nor inter-

feres with the machinations of optimizers.

6.5 Exceptions

The most common use of exceptions is to provide a kind of safety net to deal with

errors before they become major problems resulting from the propagation of erroneous

values or from wholesale crashes. Some would argue that exceptions should only be

used for such purposes, despite the temptation they present to some programmers to

use them more as a variantgoto.

As hinted near the end of Chapter 4, exceptions are not as important in SETL as they

might be in other languages. It is certainly true that there are various ways of crashing

a SETL program, ranging from systemic errors such as running out of memory to data-

oriented errors such as trying to read a non-numeric denotation as a number. The

187



Conclusions 6.5 Exceptions

emergence of a SETL type system is likely to introduce more, such as the possibility

of constraint violations and other errors.

But all these exigencies can be handled gracefully by isolating the vulnerable code

(the kind of code that would normally be placed under the protection of an exception

handler) in its own little process attached to the parent through a pump stream. If the

child crashes, the parent merely sees an end-of-file condition, which does not crash

the parent. The subprocess also offers a level of protection against denial-of-service

attacks in which clients try to hold connections open indefinitely (see Section 3.3.1).

However, I make these observations not in order to demonstrate that exception-

handling is superfluous, but merely to suggest why its absence has not been a tremen-

dous burden. The fact remains that a good exception-handling facility would be a pos-

itive addition to SETL. I will not attempt to lay out a detailed design here, but would

like to note that resumption semantics need not be seriously contemplated for SETL.

How exactly exceptions are to be identified probably should not be specified until a sat-

isfactory type system has been designed, but the potentially delicate semantics of the

initial transfer of control are already equivalently met in the situation where anexpr

block is contained within an expression—a tuple former, for example—and thatexpr

block executes agotoout of the expression instead ofyielding a value.

188



Conclusions 6.6 Miscellaneous Desiderata

6.6 Miscellaneous Desiderata

There are numerous minor features which could be added to SETL for the sake of

enhancing its already excellent support for Internet data processing, without greatly

increasing the complexity of the language. Here we mention a few.

6.6.1 Lexical Nesting

Routines (procedure and operator definitions) cannot be nested in SETL, though pro-

cedure nesting is allowed in SETL2. This is of little consequence in small programs

from the software engineering point of view, but strictly speaking, any routineq that is

purely a “helper” for another routinep ought to be private top, and the most convenient

way of arranging this is to haveq lexically contained withinp.

This notion extends to variables and constants as well as routines, and SETL would

be improved further by allowing names to be declared locally to control structures, as

in Algol 68. The rarely used keywordbegin should also be imported from Algol 68 if

this extension is made, for the sake of doing nothing more than framing a local scope.

Indeed, my own feeling is that SETL would do well to follow the lead of Algol 68

and C++ in allowing declarations to occur anywhere that other statements can occur. A

name bound by such a declaration can then be referenced throughout the remainder of

the scope. For SETL, a special proviso would have to be made that if a name with no

binding applicable anywhere in the current scope occurs, its default declaration is taken

to be at the beginning of the innermost enclosing routine (where the main program unit

189



Conclusions 6.6 Miscellaneous Desiderata

is considered a routine for this purpose). If it is declared in a given scope, the standard

rule that says it cannot be referenced in that scope before its point of declaration would

apply.

6.6.2 Filename Globbing

All Unix shells are able to create lists of filenames based on patterns that universally

include the asterisk (*) as a “wild card” that matches any run of 0 or more characters.

The standard Unix 98 shell, and most other Unix shells, also support patterns such as

the question mark (?) to match any single character, a bracket-enclosed ([ ]) run of

characters to match any character in that run, and a brace-enclosed (fg) list of strings

giving a set of alternatives. For example, if the filesfoo.c and foo.o are present in

the current working directory (seegetwd andchdir in Section 2.6), then the patterns

foo.*, foo.?, foo.[co] and foo.fc,og all stand for the same pair of filenames. Notice

that although several characters have special significance in this so-calledglobbing

convention, their meaning is different from that which obtains in regular expressions.

In SETL, the most appropriate realization of such a feature would seem to be to

introduce aglob operator which accepts a string containing a pattern obeying the con-

ventions of the Unix 98 shell and yields a (possibly null) tuple of strings representing

filenames that match that pattern. Shells behave similarly, but not identically: if a

given pattern does not match any filenames, the standard shell will simply leave the

pattern unexpanded, whereas the C shell will issue a diagnostic and abort the process

190



Conclusions 6.6 Miscellaneous Desiderata

of constructing a list of tokens to form a command. All shells have quoting conventions

that allow special characters which are normally expanded to be used as themselves in

filenames. In programs, access to such filenames is of course achieved simply by not

globbing them.

A glob function has appeared in the Posix [117] specification, and is now part of

Unix 98, along with anfnmatch function which tests a single filename to see if it sat-

isfies a given glob-style pattern. Provision of a roughly equivalent SETL primitive

would be appropriate when all the main vendors of Unix systems have caught up with

these potentially very helpful functions. “Word” expansion in the shell sense would

dovetail with this kind of filename expansion, so that abbreviations for user home di-

rectory names and other simple expressions that are familiar to shell users could be

easily accessible without the need for such convolutions as

[[[ fred home]]] := split (filter (‘bash --c " echo ˜fred" ’));

to obtain a home (login) directory name.

6.6.3 Format-Directed I/O

Another convenience, especially valuable in lower-level programming languages, is

format-directed I/O such as that found in Fortran, the C library (standardized by Posix

and Unix 98), and Algol 68. COBOLpicturesare among the most sophisticated for-

matting features in any popular programming language. The SETL functionswhole,

fixed, and floating(Section 2.14.2) get their names from Algol 68 routines, which have

191



Conclusions 6.6 Miscellaneous Desiderata

the interesting property of being one-for-one with symbolic expressions in the format

strings of the Algol 68 transput (I/O) system.

The need for format-directed I/O is less in high-level languages than in lower-level

languages because it is so easy to build strings and manipulate them as values in the for-

mer. Formats also tend to be in rather arcane little sublanguages, which in most cases

separate the expression to be output or the variable to be input from the description of

its appearance quite widely, making the correspondence difficult to discern. Neverthe-

less, formats can be quite useful and concise for encoding complex output layouts or

dealing with highly structured inputs, particularly as they tend to reflect layouts rather

pictorially. My experience with Algol 68, a language of high enough level in its han-

dling of strings and rich enough in its set of I/O primitives to make the use of formats

anything but asine qua non, was that for some tasks, they were still to be preferred

over long concatenations of string-forming expressions.

For SETL, where there has been some effort in recent years to remain compatible

with Unix (a moving but definitely slowing target in this decade), the most natural

choice for a format sublanguage would seem to be one which strives to remain close to

that of the C-callableprintf andscanf series. This has not yet been assessed in serious

detail, however.

A related format conversion issue arises for dates and times. Thefdate primitive

described in Section 2.16 can render the number of milliseconds since the beginning

of 1970 (UTC) as a date and time in the current time zone or based on UTC, but there

is currently no corresponding primitive for taking a formatted date and time apart into

192



Conclusions 6.6 Miscellaneous Desiderata

constituents in the manner of the Unix 98strptime routine nor for recombining those

parts into a single integer representing time in the manner ofmktime.

6.6.4 High-Level Internet Protocols

One of the strengths of the Java API is its support for Internet protocols above the level

of UDP and TCP, such as FTP, HTTP, and even (through third-party sources) SMTP,

NNTP, and so on. URL “connections” can be opened, and for those which use HTTP,

the associated MIME header information can be fetched and set through method calls

on the object representing the connection.

In SETL, communication via HTTP is accomplished using a package of SETL

routines which must be imported into every SETL program which wants to use them.

URLs are probably going to be with us for a long time, and it would be much more

convenient and natural to communicate with the entities addressed by URLs through

one or more I/O modes such as ‘url’, ‘ url--in’, and ‘url--out’, which would be directly

supported byopen. These would be the first modes to participate in thehandlingof

the data in streams rather than simplypassingthe data, so some fairly serious design

work will be needed here. For example, should MIME headers appear as a map, or be

manipulated by a mechanism likegetenv/setenv(Section 2.1), or both? How should

non-HTTP protocols such as FTP, which can also be specified with URLs, be treated?

The open-endedness of this problem in fact suggests that the only viable solution

will be a modular one, where support for protocols for things like distributed file sys-

193



Conclusions 6.7 Beyond the Fringe

tems, database systems, and transaction management systems will have to be mediated

by add-on modules.

6.7 Beyond the Fringe

There are a number of “features” which might appear at first glance to be desirable in

SETL, but which really are not.

6.7.1 Pointers

Perhaps the most obvious example ispointers, explicit as in Pascal or Ada (C pointers

are so tied to a machine memory model that they permit arithmetic, which is an abom-

ination), or implicit as in Java or SNOBOL. The LISP family would be lost without

them. Pointers are so useful in the construction of data structures in various languages

that programmers who are used to them may wonder how on earth one is to get along

without them. The obvious answer is to use maps. Aliases are, after all, sometimes

useful, but as remarked in Sections 1.1 and 5.3.5, they should be avoided except where

there is some compelling reason to use them. For situations where aliases are genuinely

appropriate, maps are the ideal general reference structure, because they allow keys to

be selected on the basis of their semantic content rather than being forced to be opaque

nodes or thinly veiled integers, and maps also have the virtue of clearly identifying a

context within which each reference (map lookup) occurs—every map is like a separate

address space.

194



Conclusions 6.7 Beyond the Fringe

Most languages that have pointers include pointers tovariables. Scheme does not,

but the ease with which data can be converted to code at run-time produces a similar

effect. Nor does Java—its pointers are all toobjects—and this at least eliminates one

class of alias.

To add pointers to variables in SETL would completely destroy its value semantics.

Even to add pointers to objects would be unwise, because maps already best serve

the required purpose in a high-level language; there is more to be lost than gained in

burdening the SETL programmer with the need to keep track of the distinction between

an object and a reference to that object. Neither is it feasible to insist that all user-

defined objects have the kind of status they have in Jave, where all accesses begin with

a reference. This would make them unacceptably different from SETL’s fundamental

aggregate objects (sets and tuples), which are strictly values.

6.7.2 Closures and Continuations

Another unwelcome addition to SETL would beclosuresand more generallycontinu-

ationsin the Scheme sense. I consider even the creation of “procedure values” by the

routine pseudo-operator to be a provisional measure that is to be deprecated, despite

the fact that it was indispensable in “escaping the event loop” [89] in Section 5.3.8.3

via callbacks. It is of interest that a cautionary note regarding the manipulation of a

global variable had to be given with that example.

A closure can preserve local variables from destruction beyond their normal span,

195



Conclusions 6.7 Beyond the Fringe

so that the state of those variables can be inspected and updated when the closure is

later invoked. Closures have some similarity to pointers in that the holder of a closure

is effectively in possession of a set of references to variables. Worse, whereas the

number of variables to which ordinary procedure values can refer is bounded by the

number of global identifiers in a program, there is no such limit for closures. The same

pair of lambda expressions, for example, can be used any number of times to produce

new pairs of closures, each pair referring to a variable in a different activation record.

Closures are in any case a poor substitute for a more forthright way of bundling

data with the means to access and manipulate it, namely objects. Callbacks, too, are

better treated in Java/C++ style than being implemented using procedure values or

closures. The lightweight multiple inheritance available to any Java object through

the repeated use ofimplements allows it to register for callbacks by any other object

that recognizes the appropriateinterface simply by defining methods with the names

and signatures required by thatinterface, and identifying itself to that other object by

calling the appropriate registration method.

6.7.3 Threads and Fine-Grained Concurrency

This dissertation has argued for the liberal use of processes, and I hope the case study of

Chapter 4 has begun to demonstrate their value. These processes enjoy the “high walls

of protection” alluded to in Section 5.3.7 around them: they share very few resources,

and those which they do share are usually mediated by third parties such as server

196



Conclusions 6.7 Beyond the Fringe

processes.

By contrast, languages that encourage the use of “threads” (processes sharing vari-

ables in the “local” address space) create synchronization concerns for which the pro-

grammer must remain constantly vigilant.

I have found Java ideal as a language for introducing concurrency and its attendant

problems in three courses so far: a graduate course in Advanced Operating Systems, a

senior undergraduate course in Network Programming, and in a junior undergraduate

course in Programming Languages, because the elements (thread creation, synchro-

nization, and signalling) are very accessibly packaged in Java, and this allows my stu-

dents to proceed rapidly to the stage of learning for themselves how difficult concurrent

programming is to do correctly. It was rare indeed to find a student program that used

thesynchronized keyword completely appropriately, had no race conditions, and was

entirely safe from deadlock.

As with pointers and closures, the issue again is resource sharing by multiple par-

ties. In this case, however, the parties are threads, and instead of only one party at

a time making access to common resources, all the parties at once can do so, in an

interleaved if not literally concurrent manner.

Apart from disciplined programming, the best defense against the enormous chal-

lenges raised by the need to deal with all the possible interactions of simultaneously

executing threads is to minimize those interactions. A model that offers the “conve-

nience” of shared access to all the data that is naturally visible to all threads works

powerfully against this minimization.

197



Conclusions 6.7 Beyond the Fringe

For this reason, even without considering the problems of defining and implement-

ing a SETL system that is correct and yet does a reasonable job of timeslicing and of

code optimization, I am very much opposed to the introduction of any kind of threads

in SETL that would allow the sharing of global (but process-local) data. Currently, the

only objects to which SETL processes share access are external, and in good designs

are themselves processes. This is as it should be.

Conversely, threads are not likely to be particularly useful in SETL. Message-

passing between processes is at worst a heavier mechanism than strictly necessary

in any given situation, and certainly is a sufficient base upon which to implement

semaphores, monitors, and so on. In the following example, suggested by Doug Lea’s

“bounded counter” study [136, pp. 84–102], a monitor for a counter (the counter could

as easily be a bounded buffer) is implemented as a process which acceptsincrement

requests from “producers” anddecrementrequests from “consumers” through server

sockets. Requests are serviced immediately if possible, and the requester is blocked

otherwise:

-- To run me in Unix: setl -DMIN=0 -DMAX=2 fmeg &

var counter:= MIN ; -- MIN effectively#defined on command line
var producers:= fg; -- clients awaiting increment
var consumers:= fg; -- clients awaiting decrement

inc sock:= open(‘0’, ‘ server--socket’); -- listen for producers
dec sock:= open(‘0’, ‘ server--socket’); -- listen for consumers

putfile (‘ inc--port’, str port inc sock); -- advertise producer port
putfile (‘dec--port’, str port dec sock); -- advertise consumer port

198



Conclusions 6.7 Beyond the Fringe

loop -- cycle indefinitely

[[[ready]]] := select([[[finc sock, dec sockg]]]);

if inc sockin readythen -- producer (increment) request
fd := accept(inc sock);
if fd 6= om then
if counter< MAX then -- satisfy request immediately
counter+:= 1;
sendcounter value to client ( fd);
notify any waiting consumer;

else -- counterat MAX , defer request
producerswith := fd;

end if;
end if;

end if;

if dec sockin readythen -- consumer (decrement) request
fd := accept(dec sock);
if fd 6= om then
if counter> MIN then -- satisfy request immediately
counter�:= 1;
sendcounter value to client ( fd);
notify any waiting producer;

else -- counterat MIN , defer request
consumerswith := fd;

end if;
end if;

end if;

end loop;

-- Refinements

notify any waiting consumer::
fd from consumers; -- pull arbitrary fd from consumers
if fd 6= om then

199



Conclusions 6.7 Beyond the Fringe

counter�:= 1;
sendcounter value to client ( fd);

end if;

notify any waiting producer::
fd from producers; -- pull arbitrary fd from producers
if fd 6= om then
counter+:= 1;
sendcounter value to client ( fd);

end if;

-- Subprogram

proc sendcounter value to client ( fd);
printa ( fd, counter); -- tell client the newcountervalue
close( fd);

end proc;

This program can be exercised conveniently by running as many instances of the fol-

lowing programs as desired. For simplicity, they assume they are being run on the local

machine in the same directory as the monitor, but because the communication uses

full-fledged TCP sockets, they can easily be run anywhere if the monitor’s actual host

name and port numbers are first substituted in theopencalls:

-- Producer program (requests one increment)
fd := open(‘ localhost:’ + getfile ‘ inc--port’, ‘ socket’);
print (getline fd);

-- Consumer program (requests one decrement)
fd := open(‘ localhost:’ + getfile ‘dec--port’, ‘ socket’);
print (getline fd);

200



Conclusions 6.8 SETL Implementations

6.8 SETL Implementations

As was remarked in Chapter 1, there has never really been a fully satisfactory SETL

implementation, although my own has at least the advantages of being actively main-

tained, released under the GNU Public License, written in portable C, blessed with a

very fast translator, and packaged in a way which makes heavy use ofautoconf to al-

low it to be configured and adapted easily to a wide variety of Unix-based operating

systems.

However, its interpreter reflects a much greater interest in modularity than speed.

When a new version of the language which includes a respectable type system has

been sufficiently well defined, I think it would be worthwhile to write an entirely new

SETL compiler and run-time system in Ada 95. If the language is defined in terms of

Ada expansions, and the compiler is designed around that definition, it will be possible

to take advantage of the GNAT [1] system. Deeper code transformations like those

performed by APTS [33, 161, 126, 162], in the presence of a serious type system, might

permit the kind of thorough optimization usually seen only in the implementations of

lower-level languages.

Another advantage of tying SETL’s definition and implementations to Ada is that

Ada’s run-time semantics are readily expressed in term of the Java Virtual Machine

(JVM) [129]. This would pave the way to writing browser “applets” in SETL.

201



Conclusions 6.9 Comparison with Other Languages

6.9 Comparison with Other Languages

The main thing that distinguishes SETL from other high-level languages is its syntax.

Its roots in mathematical notation, developed and refined by and for people long be-

fore computers arrived on the scene, lend it the ability to express a wide variety of

computational processes naturally, elegantly, and above all readably.

6.9.1 Perl

Perl [182, 205, 155] is perhaps the most commonly used “high-level” language for data

processing. It sprang from Larry Wall’s frustration with the insufficiency ofawk for

these purposes, and has grown into a baroque monstrosity through endless patching.

The syntax is arcane and turgid (practically every variable reference has to start with a

special symbol), and the semantics are just as bad: all undeclared variables are global,

and the system interface is so implementation-dependent as to make a mockery of the

claims of portability usually made for Perl. Worse, the interface to Unix is so thin that,

for example,select cannot be used with the normal buffered I/O streams but only with

raw file descriptors, and the semantics of signals depend on which strain of Unix is host-

ing the Perl implementation. The latter means that re-establishing the signal handler

may well suffer from the historical System V race condition that led to the BSD-style

and eventually Posix signal handling definitions. Unix routines that are not re-entrant

have the same potential for causing disaster if called from signal handlers in Perl as

they would in C, and to top it all off, signals will be fielded asynchronously regardless

202



Conclusions 6.9 Comparison with Other Languages

of the state of the garbage-collecting memory manager, leaving the documentation no

choice but to advise programmers to “do as little as possible” in signal handlers to min-

imize the probability of disaster—no guarantee can be made in this regard, no matter

how simple the handler is kept.

SETL, of course, strictly shields the high-level programmer from such nonsense,

by providing a high-level interface toselect, by permitting only synchronous access to

signals, and in general by keeping all issues of portability internal to the run-time sys-

tem rather than exposing them at an inappropriate level. Moreover SETL, unlike Perl,

provides bidirectional pipe streams (called pumps in SETL), a powerful inter-process

communication facility whose usefulness is amply demonstrated by the WEBeye case

study of Chapter 4.

Perl is often cited for conciseness of expression, but I have never found it to beat

SETL on that score either. Indeed, the opposite is often true. Here, for example, is

a TCP client program derived rather directly from the one in the “llama” book [182,

p. 224], where it is described as a “simple client”. This version is modified to be

functionally identical to the one-line SETL program in Section 3.1.1, and is also similar

to the Perl sample program that can be found on theperlipc manual page on most Unix

systems:

$port = 13;

$them = ’galt.cs.nyu.edu’;

use Socket;

$sockaddr = ’S n a4 x8’;

203



Conclusions 6.9 Comparison with Other Languages

($name, $aliases, $proto) = getprotobyname(’tcp’);

($name, $aliases, $type, $len, $thisaddr) = gethostbyname(’localhost’);

($name, $aliases, $type, $len, $thataddr) = gethostbyname($them);

$this = pack($sockaddr, AF INET, 0, $thisaddr);

$that = pack($sockaddr, AF INET, $port, $thataddr);

socket(S, PF INET, SOCK STREAM, $proto) jj die ”socket: $!”;

bind(S, $this) jj die ”bind: $!”;

connect(S, $that) jj die ”connect: $!”;

print <<<S>>>;

Kernighan and Pike [133] code the classic Markov chain algorithm in C, Java, C++,

Awk, and Perl to compare them on a typical small data processing task. The program

sizes range from 150 lines of source code for the C version down to 18 lines for the

Perl version, reproduced here:

# markov.pl: markov chain algorithm for 2-word prefixes

$MAXGEN = 10000;

$NONWORD = ”\\\ n”;

$w1 = $w2 = $NONWORD; # initial state

while (<<<>>>) f # read each line of input

foreach (split) f

push(@f$statetabf$w1gf$w2gg, $ );

($w1, $w2) = ($w2, $ ); # multiple assignment

g

g

push(@f$statetabf$w1gf$w2gg, $NONWORD); # add tail

204



Conclusions 6.9 Comparison with Other Languages

$w1 = $w2 = $NONWORD;

for ($i = 0; $i <<< $MAXGEN; $i++) f

$suf = $statetabf$w1gf$w2g; # array reference

$r = int(rand @$suf); # @$suf is number of elems

exit if (($t = $suf->>>[$r]) eq $NONWORD);

print ”$t\\\n”;

($w1, $w2) = ($w2, $t); # advance chain

g

The authors comment that “the Perl and Awk programs are short compared to the three

earlier versions, but they are harder to adapt to handle prefixes that are not exactly two

words” [133, p. 80]—indeed, in the versions written in the lower-level languages, the

prefix size was governed by a named integer constant. Perl is very much on home turf

here, and in fact this is exactly the sort of program Perl programmers love to write. The

following SETL version is only slightly shorter than the above Perl program on which it

is modeled, but is more general (the number of prefix words is controlled by a constant)

and more direct (for example, the tuple of words recorded in eachstatetabentry is built

up by tuple concatenation rather than with some mysteriouspush operator). To me, it

also looks like a real program instead of a wild festival of glyphs:

-- Markov chain demo

constmaxgen= 10000;
constnpfx= 2; -- number of prefix words
constnonword= ‘ \\\ n’;

statetab:= fg;
words:= npfx� [[[nonword]]]; -- initial state
for word in split (getfile stdin) loop

205



Conclusions 6.9 Comparison with Other Languages

statetab(words) +:= [[[word]]];
words:= words(2.. ) + [[[word]]];

end loop;
statetab(words) +:= [[[nonword]]]; -- add tail

words:= npfx� [[[nonword]]];
for i in [[[1.. maxgen]]] loop

if (word := random statetab(words)) = nonwordthen stop; end if;
print (word);
words:= words(2.. ) + [[[word]]];

end loop;

6.9.2 Icon

Icon [97, 96] is an interesting high-level language for programming in the small. It

has no type declarations, and its variable declarations and scope rules are similar to

those of SETL. It represents something of an extreme in programming language de-

sign in that its expression evaluation mechanism is fully backtracking overgenerators

whichsuspendand produce a value when first encountered or when asked toresumeby

being backed into. Unless it is abandoned before it is exhausted, a generator must ulti-

matelyfail. Together with some rules which limit backtracking in appropriate contexts,

this provides a convenient basis for control flow, because the assignment of expression

results into variables typically occurs at the same time as successful evaluation, elimi-

nating the need for a distinct Boolean type.

Icon’s pervasive backtracking is a generalization of the backtracking that was used

in SNOBOL string pattern matching. I have used both Icon and SNOBOL’s near-

identical twin SPITBOL extensively, and although the tight interweaving of control

206



Conclusions 6.9 Comparison with Other Languages

flow with expression evaluation in Icon sometimes produces welcome effects, such as

the fact thati <<< j <<< k accomplishes what in most languages would have to be written

as(i <<< j) and (j <<< k), the extra “liveness” of the ubiquitous generators somehow does

not turn out to be so often useful as it does to require vigilance. The backtracking that

worked so well for pattern matching in SNOBOL is perhaps at its best in that limited

domain. Stranger still, the syntactic improvements to pattern matching that were made

never turned out to be quite as comfortable as the original SNOBOL forms.

Recently, Icon has proven itself to be particularly well suited to graphics program-

ming [98], and of course it has always been strong on string manipulation. My feeling

is that Icon is a close second to SETL for data processing. Its syntax is fairly elegant,

though not as close to that of mathematics as SETL’s (in particular, it doesn’t have set

and tuple formers), and is rather heavy with operator forms—for example, “not equals”

is spelled̃ =, ˜==, or ˜===, depending on whether numbers, strings, or general objects

such as lists are being compared. Icon also lacks SETL’s value semantics, as is evident

in the fact that the outcome of=== or ˜=== depends on whether the objects areidenti-

cal, which for lists means both operands refer to the same list, but for scalars simply

means that they have the same value.

Icon allowsrecord definitions which, like procedures, are global. The fieldnames

are not typed, and may be addressed by name or by position. Records are lumped

in with lists, sets, and tables as the aggregates of values collectively calledstructures

in Icon terminology. They all have pointer semantics, and acopy primitive performs

“one-level” copying. It is tempting to adopt a record model for SETL that is as simple

207



Conclusions 6.9 Comparison with Other Languages

as Icon’s, perhaps borrowing its cavalier attitude towards field typing and reference

though not its pointer semantics. I think this should wait, however, until an Ada-based

type system such as that suggested in Section 6.3 has at least been investigated far

enough to ensure that no unfortunate incompatibilities will be introduced.

6.9.3 Functional Languages

LISP and derivatives such as Scheme [128], and the purely functional languages such

as ML [146] and Haskell [197], are of more theoretical than practical interest for data

processing, though Haskell’slist comprehensionsare very similar to SETL’s tuple for-

mers, and itslazy evaluationadmits of concise expressions that can represent infinite

lists much more directly than functions can. Haskell’s strong typing combined with

the ability to dispatch to a routine of the correct signature based on generalizedpattern

matchinglend it great potential for clarity and elegance. Haskell does not seem to have

found its way into the world of data processing to any significant extent. I do not know

why, but can only surmise that the lack of assignment is disconcerting to many. In

the case of servers, it is not clear that tail recursion is the most natural way to express

an infinite main loop, nor whether state information such as a map of current client

records is best represented as a succession of values, each map (say) being constructed

from the previous map and passed as a parameter to the next round of recursion. On

the other hand, if one assumes that the optimizer and garbage collector in a Haskell

implementation are able to recognize the opportunity for conversion of tail recursion

208



Conclusions 6.9 Comparison with Other Languages

to iteration and the possibility of suppressing copy proliferation, this approach does

offer the significant advantage of avoiding the hazards associated with the updating of

variables in place.

6.9.4 Python

Python [201] is another language that is close in level to SETL, and is deliberately ori-

ented towards what I have been calling data processing in this dissertation. It descends

from ABC [193], a language which Guido van Rossum, the designer and implementer

of Python, helped design in the 1980s. Python has a number of odd and in some cases

counterintuitive aspects, such as its scoping rules [147]. One of the interesting fea-

tures it inherits from ABC is the use of indentation as the only syntactic mechanism

for control-structure grouping. Python suffers from the regrettable pleonasm of simul-

taneously offeringlists, which are tuples with pointer semantics, andtuples, which are

tuples with value semantics. Tuple denotations are marked by parentheses, and the

problem of how to denote a singleton is unfortunately solved by writing, e.g., “(x,)”.

The typical assertions of conciseness for a high-level language are made on behalf

of Python [200], but it does not have anything approaching SETL’s set and tuple form-

ers. As a consequence, even a “showpiece” subroutine such as the following one [199]

by van Rossum can be written more concisely and readably in SETL:

def find path(graph, start, end, path=[ ]):

path = path + [start]

if start == end:

209



Conclusions 6.9 Comparison with Other Languages

return path

if not graph.has key(start):

return None

for node in graph[start]:

if node not in path:

newpath = find path(graph, node, end, path)

if newpath: return newpath

return None

In SETL, the equivalent function may be written with an existential predicate in place

of thefor-loop:

proc find path(graph, first, last);
if first = last then

return [[[first]]];
end if;
if existsnextin graphffirstg jjj

(path:= find path(graphlessffirst, next, last)) 6= om then
return [[[first]]] + path;

end if;
return om ;

end find path;

This assumes a multi-mapgraph, but can be modified to accommodate an adjacency

list by changing “graphffirstg” to “ graph(first) ? fg”. The difference in languages

becomes even more apparent in the following example, again by van Rossum:

def find all paths(graph, start, end, path=[ ]):

path = path + [start]

if start == end:

return [path]

if not graph.has key(start):

return [ ]

210



Conclusions 6.9 Comparison with Other Languages

paths = [ ]

for node in graph[start]:

if node not in path:

newpaths = find all paths(graph, node, end, path)

for newpath in newpaths:

paths.append(newpath)

return paths

In SETL, this becomes

proc find all paths(graph,first, last);
if first = last then

return f[[[first]]]g;
end if;
return f[[[first]]] + path:

path in +=ffind all paths(graph lessffirst, next, last) :
nextin graphffirstggg;

end find all paths;

where the structure of the result, a set of paths that are tuples, is more obvious and at

the same time more natural than the list of lists returned by the Python function. And of

course in SETL, if we are content to have paths represented as subgraphs and are more

interested in a concise definition than in micro-managing the optimization process, we

can simply write

proc find all paths(graph,first, last);
return fs in pow graphjjj is path(s, first, last)g;

end proc;

whereis pathmight be defined as

211



Conclusions 6.9 Comparison with Other Languages

proc is path(graph, first, last);
vertices:= domain graph+ rangegraph;
return #graph= #vertices� 1 and
domain graph= verticeslesslast and
rangegraph= verticeslessfirst;

end proc;

which tests forgraphbeing a tree whose domain is all vertices exceptlast and whose

range is all vertices exceptfirst. Finally,find pathis easily implemented asarb applied

to the result offind all paths.

6.9.5 Rexx

Rexx [49], originally a shell language that began to supersede the primitive EXEC job

control language in the CMS component of IBM’s VM/370 operating system during

the 1980s, has been used for many years now as a general-purpose high-level language,

and has been ported to a wide variety of systems. It retains many of the characteristics

of a shell programming language. For example, any commands that are not recog-

nized as designating built-in or user-defined operations are passed to the environmental

command interpreter, such as CMS or an editing environment such as that operating

system’s standard XEDIT.

Although all values manipulated by a Rexx program are strings (even arithmetic is

defined only on strings representing numbers), Rexx has bothsimplevariable names

such asx andcompoundones such asx.y. The latter serve as a general associative

device, because they in x.y can be a number, a simple variable name, or a symbol that

212



Conclusions 6.9 Comparison with Other Languages

is neither a number nor a variable name. Moreover, ify is the name of an uninitialized

variable, its default value is ‘Y’, i.e., its own name in uppercase.

This gives considerable power to a language that is fundamentally very simple. Its

parser has to be present at run time, because any string can be treated as an expres-

sion to be evaluated. Its scopes are unrepentantly dynamic. Rexx is a good “glue”

language, suitable for high-level control, but it lacks both the mathematical syntax and

data structuring capabilities of SETL. Although its compound variable names allow it

to be used directly for data processing, these shortcomings and the usual pitfalls of a

highly dynamic language are likely to be felt more acutely as program size increases.

6.9.6 Java

There are many more languages which could be compared with SETL as high-level

data processing languages, but let us conclude by reflecting on one that is really of in-

termediate level but has gained much currency in recent years: Java. This is a language

which took advantage of the widespread popularity of C++ to make an immediate ap-

peal to programmers. It is backed by huge financial resources, is well documented and

widely implemented, and (perhaps most important of all) has APIs for a great variety

of application domains defined for it.

The brilliance of Java as a language is really its reductionism. Its syntax is very

thin—it doesn’t have the operator declarations of C++, Algol 68, or SETL, and cer-

tainly nothing close to SETL’s set and tuple formers. Its object inheritance facilities are

213



Conclusions 6.9 Comparison with Other Languages

also very streamlined. For this, however, it probably deserves more praise than criti-

cism. A class can only be derived from one otherclass, but it can also be derived from

any number ofinterfaces, which are purely abstract descriptors with no data of their

own. This eliminates the troublesome questions that arise in general multiple inheri-

tance, such as what happens when a base class with data occurs more than once in the

hierarchy of ancestors, yet the Java model still allows an object to play multiple roles,

such as identifying itself as a party interested in several different kinds of event.

Everything is an object in Java, except for a few built-in types of scalar value. This

is a less welcome aspect of its reductionism, as it encourages the creation of aliases

instead of independent values (cf. Sections 5.3.5 and 6.7.1). Its threads encourage the

asynchronoussharing of variables, which is worse, as outlined in Section 6.7.3.

Java’s approach to the handling of exceptions may seem a little severe in its ten-

dency to force programmers to consider errors they might not be interested in, but this

is certainly to be preferred to the approach which doesn’t allow errors to be caught at

all, especially in long-running programs intended for public use.

The best thing to do with Java is probably to follow the lead of the Intermetrics

corporation in adapting a better language, Ada 95 in that company’s case, to Java’s

magnificent suite of APIs, and use the Java language as the mid-level, symbolic form

of what is undeniably a highly portable machine language, Java Byte Code. The main-

tainers of Rexx have also taken this approach. JPython [115] goes even farther, being

an entirely new implementation of Python written in Java and targeted to the Java run-

time environment. Each of these systems takes advantage of and reflects Java package

214



Conclusions 6.10 Summary

structure in some way, and SETL would do well to follow suit.

6.10 Summary

Among programming languages, SETL stands apart as the only one to have been de-

signed to take advantage of the syntactic tradition of abstract mathematics. Schwartz’s

desire to free programmers from their preoccupation with machine-level concerns, and

his recognition that people had already evolved notations which served as an aid to

mathematical reasoning, combined to produce a language which to this day is unpar-

alleled in its ability to express the most essential programming constructions concisely

and naturally. It should perhaps come as no surprise that SETL gracefully handles

the relatively mundane generalizations required in typical data processing. SETL is an

elegant language, with clean semantics and a refreshing degree of orthogonality. The

importance of these attributes to those who must deal daily with programs is profound.

It is easy to take pride in one’s work when the results tend to reward revisiting: a

virtuous cycle of readability, robustness, and maintainability ensues.

SETL is a language which deserves to be taken seriously. I have tried to show in

this dissertation how it excels in a realm remote from the algorithmic showpieces of

1970, how it can be really useful in the process-intensive age of the Internet, and what

general principles and patterns seem to work best in this context. There is much work

still to be done, but it is perhaps not too optimistic to hope that SETL’s slow start will

one day prove to have been a good start.

215



Appendix A

WEBeye Source Code

Following are the source code listings for the WEBeye Box described in Chapter 4.

They appear in alphabetical order by filename, and are cross-referenced according to

their roles and relationships. The script precursorsvc-master.cgi and vc-jmaster.cgi

are not strictly part of the Box, but call into it. Likewise, the programsvc-go.setl,

vc-quit.setl, vc-restart.setl, vc-check.setl, andvc-cron.setl are outside the Box but deal

with aspects of its administration.

The typographic conventions here, as throughout the text of the dissertation, reflect

the result of automated preprocessing, which uses fonts, subscripts, and open quotes

for clarity. The SETL sources from which these listings are derived are encoded in

a subset of the “printable” ASCII characters. They obey the character set restrictions

of the SETL textbook [181], and can be compiled under the default case-insensitive

stropping convention of my current SETL implementation [19].

216



WEBeye Source Code A.1 vc-admin.setl

A.1 vc-admin.setl

Textually #included by:
vc-cron.setl (Section A.9)
vc-go.setl (Section A.18)
vc-quit.setl (Section A.35)
vc-restart.setl (Section A.37)
vc-toplev.setl (Section A.42)

Source code:

-- Management services, principally relating to the creation,
-- interpretation, and removal of mutual exclusion (mutex) locks.
--
-- Use: #include me after you defineyhwhandmy lock.

proc msg(s); -- log directly onstdout (cf. msgin vc-msg.setl)
spew(yhwh+ ‘ : ’ + s);

end proc;

proc spew(s); -- log a timestamped message
print (fdate(tod), ‘ :’, s);
flush (stdout);

end proc;

proc commence; -- acquire mutex or abend immediately
var text,t, rc;
makesymlink;
if last error 6= no error then
msg(‘Cannot obtain lock file ’ + my lock+ ‘ -- ’ + last error );
if (text := readlink my lock) 6= om then
msg(‘Another instance of ’ + yhwh+ ‘ may be running.’);
msg(‘Currently, ’ + render lock text+ ‘ .’);
msg(‘Please check processes and do a ’ + str (‘ rm ’ + my lock) +

‘ if necessary.’);
if yhwh= ‘vc--toplev.setl’ then
msg(“You can use ’ vc--quit’ to make sure the Box is stopped,”);
msg(“and then ’ vc--check’ to check for old processes.”);
msg(“Finally, ’ vc--restart’ will clear out ” + str my lock);

217



WEBeye Source Code A.1 vc-admin.setl

msg(“and manage the log files for you.”);
end if;

end if;
rc := 1;
msg(‘Exiting with status = ’ + str rc + ‘ .’);
stop rc;

end if;
end proc;

proc makesymlink;
clear error ;
symlink (yhwh+ ‘ (pid ’ + str pid + ‘ ) started at ’ + str tod,

my lock);
end proc;

op render lock (text);
return render link (my lock, text);

end op;

proc render link (name, text);
var t;
return name+ ‘ -->>> ’ + text+

if (t := extract timestamp text) 6= om
then ‘ [’ + fdate(t) + ‘ ]’
else‘’
end if;

end proc;

-- Extract the last “field” intextas a timestamp if possible:
op extract timestamp (text);
var t;
t := split (text);
t := t(#t);
if t(‘ [1--9][0--9]���’) = t then
t := val t;
if t � tod + 10�365�24�60�60�1000then
return t;

end if;

218



WEBeye Source Code A.1 vc-admin.setl

end if;
return om ;

end op;

-- Extract the pid embedded intext if possible:
op extract pid (text);
var p;
if (p := text(‘ \\\\\\ (pid ’ .. ‘ \\\\\\ )’)) 6= om then
p := p(6.. #p�1);
if p(‘ [1--9][0--9]���’) = p then
p := val p;
-- This is well beyond the current range of Unix pid numbers:
if p< 2��31 then
return p;

end if;
end if;

end if;
return om ;

end op;

proc finis (rc); -- release mutex and yield status coderc to system
unlink (my lock);
stop rc;

end proc;

219



WEBeye Source Code A.2 vc-allowed.setl

A.2 vc-allowed.setl

Textually #included by:
vc-do.setl (Section A.11)
vc-event.setl (Section A.12)
vc-image.setl (Section A.20)
vc-toplev.setl (Section A.42)

Source code:

-- Test whether the peer atpeer addressfd is in the set of
-- “allowed” hosts (usually meaning allowed to use the server
-- that has calledallowed):

proc allowed( fd, hosts(�)); -- rudimentary host-based security
var ok ips,afd, ip;
[[[ok ips]]] := hosts;
if ok ips= om then
afd := open(‘vc--allowed.conf’, ‘ r’);
if afd= om then
ok ips := fg += faliasesip : ip in f‘ localhost’, ‘ 127.0.0.1’,

hostname, hostaddrgg;
else
reada (afd, ok ips);
close(afd);

end if;
end if;
ip := peer addressfd;
return ok ips� aliasesip 6= fg;

end proc;

op aliases(ip);
return ip names(ip) + ip addresses(ip);

end op;

220



WEBeye Source Code A.3 vc-autoinit.setl

A.3 vc-autoinit.setl

Called by parent program:
vc-send.setl (Section A.38)

Calls child programs:
vc-comdev.setl (Section A.7)
vc-comport.setl (Section A.8)

Source code:

constyhwh= ‘vc--autoinit.setl’;

-- Try to provoke the Canon into auto-initializing

printa (stderr, yhwh, ‘begins’);

com dev := filter (‘exec setl vc--comdev.setl’);
com port := val filter (‘exec setl vc--comport.setl’);

msr := 6; -- modem status register (MSR)
cts bit := 2��4; -- “clear to send” (CTS) bit

fd := fileno open(‘ /// dev/// port’, ‘ direct’);

-- Obtain initial CTS value
seek( fd, com port + msr);
msr val := abs getc( fd);
cts val := sign (msr val bit and cts bit);
printa (stderr, ‘CTS at entry to’, yhwh, ‘ :’, cts val);

-- Try to provoke an auto-init by sending a bad length byte
putfile (com dev, ‘ \\\ xff’);

start clock := clock;

-- Delay 300 ms to give it plenty of chance to take effect
select(om, 300);

seek( fd, com port + msr);

221



WEBeye Source Code A.3 vc-autoinit.setl

msr val := abs getc( fd);
cts val := sign (msr val bit and cts bit);
printa (stderr, ‘CTS after 300 ms :’, cts val);

-- Watch for CTS to come back up.

loop doing
delta:= clock� start clock;

while delta< 7500do
select(om, 100); -- delay 100 ms
seek( fd, com port + msr);
msr val := abs getc( fd);
if sign (msr val bit and cts bit) = 1 then
printa (stderr, ‘CTS up after’, delta, ‘ms’);
gotodone;

end if;
end loop;
printa (stderr, ‘CTS not up after’, delta, ‘ms’);

done:
printa (stderr, yhwh, ‘ends’);

222



WEBeye Source Code A.4 vc-camera.setl

A.4 vc-camera.setl

Service provided:
camera

Called by parent program:
vc-toplev.setl (Section A.42)

Calls child program:
vc-ptz.setl (Section A.33)

Textually #includes:
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-provide.setl (Section A.32)

Source code:

constyhwh= ‘vc--camera.setl’;

-- This is a multiplexing server “front end” to the program
-- vc-ptz.setl which provides a high-level command
-- interface, designed for the convenience oftelnet
-- clients and other programs, to the Canon VC-C3 pan///tilt/// zoom
-- camera controller.

constvc ptz= ‘exec setl vc--ptz.setl’;

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals
constcamerafd = fileno provide service(‘camera’);

var clients:= fg;

loop

[[[ready]]] := select([[[fsigtermfd, camerafdg + domain clients]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

223



WEBeye Source Code A.4 vc-camera.setl

for client= clients(pumpfd) jjj pump fd in readyloop
msg(clients(pumpfd).name+ ‘ done’);
close(pump fd);
clients(pumpfd) := om;

end loop;

if camerafd in readythen
fd := accept(camerafd);
if fd 6= om then
name:= getnamefd;
msg(name+ ‘ accepted’);
pump fd := open(vc ptz+ ‘ ---- ’ + str fd, ‘pump’);
close( fd);
if pump fd 6= om then
client := fg;
client.name:= name;
clients(pumpfd) := client;

else
msg(‘ failed to start " ’ + vc ptz+ ‘ " for ’ + name);

end if;
end if;

end if;

end loop;

proc quit gracefully;
exit gracefully([[[[[[str filenamepump fd+‘ for client ’+client.name,

pump fd]]] : client= clients(pumpfd)]]]);
end proc;

#include “vc--provide.setl”
#include “vc--getname.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

224



WEBeye Source Code A.5 vc-check.setl

A.5 vc-check.setl

Source code:

-- Report on Box processes (though this program is not part of the Box)

constpid dir = ‘vc--pid’;

constps= filter (‘ /// bin/// ps alxwwj’);
const lines= split(ps,‘ \\\ n’);
constheader= split(lines(1));
constpstup= [[[split(line) : line in lines(2.. ) jjj #line> 0]]];
constpid index= index(‘PID’);
constppid index= index(‘PPID’);
constcommandindex= index(‘COMMAND’);
constpid map= f[[[tup(ppid index), -- main parent->>>child map

tup(pid index)]]] : tup in pstupg;
const finder= f[[[tup(pid index), i]]] : tup= pstup(i)g;

for namein split (filter (‘ /// bin/// echo ’+pid dir+‘ /// ���’)) jjj
namenotin f‘’, pid dir+‘ /// ���’, pid dir+‘ /// vc--toplev’g loop

root := getfile name;
id := val root;
if not is integer id or id � 0 or id � 2��31 then
printa (stderr, ‘Process id in file ’+str name+‘ is invalid!’);

else
name(pid dir+‘ /// ’) := ‘’;
if pexists id and root in range pid mapthen
printa (stderr, ‘Process tree for " ’+name+‘ " :’);
t := [[[format pstup(finder(root))]]];
if root in domain pid mapthen
t +:= doit (root, 0);

end if;
n := 0 max=[[[#line : line in t]]];
for j in [[[1,4.. n]]] loop
prot := false;
for i in [[[#t,#t�1.. 1]]] loop
c := t(i)(j);

225



WEBeye Source Code A.5 vc-check.setl

if c = ‘ jjj’ then
if not prot and (mark (t(i), ‘ \\\\\\\\\\\\ ’))(1) > j then
t(i)(j) := ‘ ’;

end if;
elseifc = ‘ \\\\\\ ’ then
prot := true;

else
prot := false;

end if;
end for i;

end for j;
for line in t loop
line(‘ $’) := ‘’; -- fanatic
printa (stderr, line);

end for line;
else
printa (stderr, ‘Process ’+root+‘ for " ’+name+‘ " is gone.’);

end if;
end if;

end for name;

name:= pid dir+‘ /// vc--toplev’;
if (root := getfile name) 6= om then
id := val root;
if not is integer id or id � 0 or id � 2��31 then
printa (stderr, ‘Process id in file ’+str name+‘ is invalid!’);

else
name(pid dir+‘ /// ’) := ‘’;
if pexists id then
assertroot in range pid map;
line := format pstup(finder(root));
printa (stderr, ‘Primordial process for " ’+name+‘ " :’);
printa (stderr, line);

else
printa (stderr, ‘Process ’+root+‘ for " ’+name+‘ " is gone.’);

end if;
end if;

else

226



WEBeye Source Code A.5 vc-check.setl

name(pid dir+‘ /// ’) := ‘’;
printa (stderr, ‘There is no record of the process for " ’+name+‘ " .’);

end if;

if (filter (‘uname’))(‘Linux’) 6= om then
printa (stderr, ‘Try also " ps fxj" to check for orphaned processes.’);

else
printa (stderr, ‘Try also " ps xl" to check for orphaned processes.’);

end if;

proc index(what);
assert existsfield= header(i) jjj field= what;
return i;

end proc;

proc doit (parent, k);
return [[[ ]]] += [[[ [[[k�‘ jjj ’+‘ \\\\\\ ’+format pstup(finder(child))]]] +

doit (child, k+1) : child in pid mapfparentg ]]];
end proc;

op format (tup);
return tup(pid index) + ‘ = ’

+=[[[field+‘ ’ : field in tup(commandindex.. )]]];
end op;

227



WEBeye Source Code A.6 vc-clear.setl

A.6 vc-clear.setl

Called by parent program:
vc-send.setl (Section A.38)

Calls child programs:
vc-comdev.setl (Section A.7)
vc-comport.setl (Section A.8)

Source code:

constyhwh= ‘vc--clear.setl’;

-- “Clear” the Canon

printa (stderr, yhwh, ‘begins’);

com dev:= filter (‘exec setl vc--comdev.setl’);
com port := val filter (‘exec setl vc--comport.setl’);
rts lo time:= val (command line(1) ? ‘150’); -- ms
mcr := 4; -- modem control register
rts bit := 2��1;
fd := fileno open(‘ /// dev/// port’, ‘ direct’);

seek( fd, com port + mcr);
mcr val := abs getc( fd);
mcr val bit and:= bit not rts bit;
seek( fd, com port + mcr);
putc ( fd, char mcr val); -- put RTS low
select(om, rts lo time); -- delayrts lo timems

seek( fd, com port + mcr);
mcr val := abs getc( fd);
mcr val bit or:= rts bit;
seek( fd, com port + mcr);
putc ( fd, char mcr val); -- put RTS hi
select(om, 150); -- give the Canon 150 ms to catch its breath

printa (stderr, yhwh, ‘ends’);

228



WEBeye Source Code A.7 vc-comdev.setl

A.7 vc-comdev.setl

Called by parent programs:
vc-autoinit.setl (Section A.3)
vc-clear.setl (Section A.6)
vc-init.setl (Section A.21)
vc-input.setl (Section A.22)
vc-send.setl (Section A.38)

Source code:

-- Echo either the contents of the file containing the configured
-- serial device name, or a default name.

constconf file = ‘vc--comdev.conf’;
[[[com dev]]] := split (getfileconf file ? ‘/// dev/// ttyS0’);
putchar (com dev);

229



WEBeye Source Code A.8 vc-comport.setl

A.8 vc-comport.setl

Called by parent programs:
vc-autoinit.setl (Section A.3)
vc-clear.setl (Section A.6)

Source code:

-- Echo either the contents of the file containing the configured
-- serial port address, or a default port address.

constconf file = ‘vc--comport.conf’;
[[[com port]]] := split (getfileconf file ? ‘16#3f8’);
putchar (com port);

230



WEBeye Source Code A.9 vc-cron.setl

A.9 vc-cron.setl

Calls child program:
vc-restart.setl (Section A.37)

Textually #includes:
vc-admin.setl (Section A.1)

Source code:

constyhwh= ‘vc--cron.setl’;

-- This is supposed to be run every minute from the user’s crontab,
-- using an entry like this:
--
-- * * * * * cd fred; setl vc-cron.setl
--
-- This program basically tries to detect and correct any problems with
-- the Box that is supposed to be permanently running. It tries to do
-- so without going crazy (like the Sorcerer’s Apprentice) in the
-- attempt.
--
-- If and when it decides that the Box is down or malfunctioning, and
-- that it is time to try to correct the problem, it will try to clean
-- up (by removing apparently stale locks and processes) and restart
-- the Box.

constmy lock = ‘vc--cronlock’; -- lock file (mutex)
constvc cronlog= ‘vc--cronlog’; -- log of how I exited
constvc lock = ‘vc--lock’; -- Box’s lock file
constvc link = ‘vc--link.html’; -- link to pseudo- or other document
constvc prefix = ‘CGIjjj’; -- pseudo-document convention
constvc health = ‘vc--tcp/// health’; -- has Box’s health check host:port
constvc camera= ‘vc--tcp/// camera’; -- has Box’s “command” host:port
constvc going = ‘vc--going’; -- vc-go’s lock file
constvc quitting = ‘vc--quitting’; -- vc-quit’s lock file
constvc restarting= ‘vc--restarting’; -- vc-restart’s lock file
constvc rescount = ‘vc--rescount’; -- restarts since last “success”
constvc restart cmd= ‘exec setl vc--restart.setl’; -- restart command

231



WEBeye Source Code A.9 vc-cron.setl

var box locktext;

-- Try to acquire the lock named bymy lock, if appropriate.
--
-- If another recently started instance of this program is already
-- running, exit quietly and immediately. Otherwise, try to correct
-- the problem with the lock and exit more noisily, in the hope that
-- the cleanup effort (and any action the administrator subsequently
-- takes) will make it easy to get when the program is run again soon
-- (like in another minute):
--
makesymlink;
if (makesymlink result := last error ) 6= no error then
if (locktext:= readlink my lock) 6= om then
stamp:= extract timestamp locktext? 0;
if stamp< tod � 15�60�1000then
-- The lock is at least 15 minutes old, or bogus.
msg(‘Lock file ’ + render lock locktext+

‘ is more than ’ + str ((tod � stamp) div 60000) +
‘ minutes old.’);

-- Try to find and blow away the old instantiation of this
-- program, remove the lock, and exit.
if (oldpid := extract pid locktext) 6= om then
if pexistsoldpid then
kill process(oldpid);

else
msg(‘However, process ’ + str oldpid+

‘ appears to be no longer active.’);
end if;

else
msg(‘Cannot find pid in ’ + str locktext+ ‘ .’);

end if;
msg(‘Removing ’ + my lock+ ‘ and exiting with status = 1.’);
cron exit (1, render lock locktext+ ‘ old or bogus’);

else
-- Active instance, if any, is not considered too old.
if (oldpid := extract pid locktext) 6= om then

232



WEBeye Source Code A.9 vc-cron.setl

if pexistsoldpid then
-- Bow out gracefully.
cron log (0, ‘instance ’ + str oldpid+ ‘ still active.’);
stop;

else
msg(‘Lock file ’ + render lock locktext+

‘ indicates a young and active process, but ’ +
str oldpid+ ‘ appears to be no longer active.’);

msg(‘Removing ’ + my lock+ ‘ and exiting with status = 1.’);
cron exit (1, ‘instance ’ + str oldpid+

‘ disappeared mysteriously’);
end if;

else
msg(‘Cannot find pid in ’ + str locktext+ ‘ .’);
msg(‘Removing ’ + my lock+ ‘ and exiting with status = 1.’);
cron exit (1, ‘no pid found in ’ + render lock locktext);

end if;
end if;

else
msg(‘Cannot create lock file ’ + my lock+ ‘ for reason ’ +

str makesymlink result+ ‘ , but cannot read it as a ’ +
‘symlink either, for reason ’ + str last error + ‘ .’);

msg(‘Attempting unlink of ’ + my lock+ ‘ .’);
clear error ;
unlink (my lock);
if last error 6= no error then
msg(‘Unlink attempt failed for reason ’ + str last error + ‘ .’);

elseif lexistsmy lock then
msg(‘Unlink appeared to succeed, but ’ + my lock+

‘ still exists.’);
else
msg(‘Unlink apparently successful.’);

end if;
msg(‘Exiting with status = 2.’);
cron exit (2, ‘problem with access to ’ + my lock);

end if;
end if;
-- We have now acquired the mutex lock named inmy lock.

233



WEBeye Source Code A.9 vc-cron.setl

-- Now see if the Box seems to be up and healthy.

-- The Box lock file is supposed to be a symbolic link to a string of
-- information (not a real file). Try to read that information:
if (box locktext:= readlink vc lock) = om then

failure (‘Cannot read ’ + vc lock+ ‘ as a symbolic link’);
end if;

-- Look for the Box’s process id embedded in the link
if (boxpid:= extract pid box locktext) = om then

failure (‘Could not find pid in ’ + str box locktext);
end if;

-- Check whether the process thus identified really exists
if not pexistsboxpidthen

failure (‘Process ’ + str boxpid+ ‘ indicated in lock file ’ +
render link (vc lock, box locktext) + ‘ has disappeared’);

end if;

-- Wait to see pseudo-document indicating that Box is up and available
--- magic-constants file? vc-limits.setl?
interval := 100; -- ms
limit := 100000; -- ms
loop for msin finterval,2�interval.. limitg doing

flag := (content:= getfile vc link) 6= om and
match (content, vc prefix) = vc prefix;

while not flagdo
select(om, interval);

end loop;
if not flag then

failure (box() + ‘ failed to reach " running" state’);
end if;

-- Try to open the Box’s health-check service
fd := open box service(vc health, ‘health check’);

-- Exercise the health check

234



WEBeye Source Code A.9 vc-cron.setl

if (line := getline fd) 6= ‘ok’ then
failure (box() + ‘ failed health check, reason = ’ + str line);

end if;
close( fd); fd := om;

-- Try to open Box’s camera-control command service
fd := open box service(vc camera, ‘camera control command’);

-- Absorb its opening niceties
while split (getline fd ? ‘.’) 6= [[[‘ .’ ]]] loop
pass;

end loop;

-- Tell it to ensure consistency between hardware and software state
printa ( fd, ‘check’);
close( fd); fd := om;

-- Zero the restart counter, unlink lock, and exit “successfully”
putfile (vc rescount, ‘0’);
cron exit (0, ‘OK’);

-- Fancy Box identifier
proc box();
return ‘Box f’ + render link (vc lock, box locktext) + ‘g’;

end proc;

proc open box service(vc hpfile, what);
-- Look for the designated service of the Box
if (hp := getfile vc hpfile) = om then

failure (box() + ‘ failed to create file ’ + str vc hpfile);
end if;
-- Try to openhp, the host:port of the designated service
if ( fd := open(hp, ‘socket’)) = om then

failure (box() + ‘ not listening on ’ + what+ ‘ port ’ + hp);
end if;
return fd;

end proc;

235



WEBeye Source Code A.9 vc-cron.setl

-- This routine is called when the Box appears to be down or
-- malfunctioning, and attempts a restart if conditions conduce:

proc failure (message);

-- Update count of restart attempts made since the last time a
-- properly functioning Box was detected:
[[[raw]]] := split (getfile vc rescount? ‘0’);
if raw(‘ [1--9][0--9]���’) 6= raw and raw 6= ‘0’ then
msg(vc rescount+ ‘ file corrupted -- contains ’ + str raw+

‘ instead of a number -- treating as 0’);
n := 0;

else
n := val raw;

end if;
n +:= 1;
putfile (vc rescount, str n);

-- In case of recurring failures, this ratchets the restart attempts
-- back in powers of 2 up to a maximum interval of 64 units (which is
-- 64 minutes if this program is run every minute by cron):
if n mod 64= 0 or exists i in [[[0.. 5]]] jjj 2��i = n then

-- Try to restart the Box.
-- First try to make sure there aren’t any active instances of
-- vc-go, vc-quit, or vc-restart:
should run restart := true;
loop for lockfile in [[[vc going, vc quitting,vc restarting]]]

while should run restartdo
if (locktext:= readlink lockfile) 6= om then
stamp:= extract timestamp locktext? 0;
if stamp< tod � 10�60�1000then
-- Lock file more than 10 minutes old, or bogus
msg(‘Removing lock file ’ + render lock locktext);
unlink (lockfile);
if (stale pid := extract pid locktext) 6= om then

236



WEBeye Source Code A.9 vc-cron.setl

if pexistsstale pid then
kill process(stale pid);

end if;
else
msg(‘Could not find pid in ’ + str locktext);

end if;
else
-- Lock file still quite young. Skip this restart
-- opportunity - another will come along presently:
should run restart := false;

end if;
end if;

end loop;
if should run restart then
-- Attempt restart, let the world know about it, and exit:
msg(message+ ‘ -- attempting to restart Box’);
system(vc restart cmd);
cron exit (1, message+ ‘ -- performed ’ + str vc restart cmd);

end if;

end if;

-- Log the failure, unlink the lock, and exit without spamming
-- stderr or attempting a restart
cron exit (1, message);

end proc;

proc kill process(processid);
msg(‘Killing ’ + str processid + ‘ ...’);
kill (processid); -- send TERM signal
select(om, 333); -- give TERM a chance
kill (processid, ‘KILL’); -- send KILL signal to make sure

end proc;

-- The log file named invc cronlogshould only be used for this

237



WEBeye Source Code A.9 vc-cron.setl

-- purpose; other spam will be spewed onstderr and mailed to
-- the user bycron:
proc cron log (rc, message);

fd := open(vc cronlog, ‘a’);
printa ( fd, fdate(tod), ‘ : pid’, pid, ‘ : exit’, rc, ‘ :’, message);
close( fd);

end proc;

proc cron exit (rc, message);
cron log (rc, message);
finis (rc);

end proc;

#include “vc--admin.setl”

238



WEBeye Source Code A.10 vc-decode.setl

A.10 vc-decode.setl

Textually #included by:
vc-do.setl (Section A.11)
vc-event.setl (Section A.12)
vc-model.setl (Section A.27)
vc-ptz.setl (Section A.33)

Source code:

-- Operator to decode a low-level message from the Canon

op decode( frame);

constcamerahead= 1,
pan tilter = 5,

ccu= 8;

r := fg;

if not is string frameor #frame= 0 then
r.kind := ‘erroneous’;
r.frame:= frame;
r.detail := if is string framethen

‘Zero--length frame’
else
if frame= om then ‘Frame is OM’
else‘Frame is of type ’ + type frame
end

end if;
return r;

end if;

if #frame= 1 then -- one of my specials
r.kind := ‘special’;
r.frame:= frame;
caseframe(1) of
(‘���’): r.detail := ‘ Inter--character timeout’;
(‘@’): r.detail := ‘Ack timeout in multiple command sequence’;

239



WEBeye Source Code A.10 vc-decode.setl

(‘+’): r.detail := ‘Checksum error’;
(‘ !’): r.detail := ‘Timeout waiting for ack/// nak or response’;
end case;
return r;

end if;

r.frame:= hex frame;

fid := abs frame(1); -- Frame ID

device:= fid bit and 16#0f;

casedeviceof
(camerahead): r.device:= ‘Camera Head’;
(pan tilter): r.device:= ‘Pan/// Tilter’;
(ccu): r.device:= ‘CCU’;
else r.device:= ‘unknown device (0x’+hex char device+‘ )’;
end case;

if (fid bit and 16#80) = 0 then
-- command frame
cid := abs frame(2); -- Command ID
cmd:= cid bit and 16#1f; -- Command Type bits
r.cmd:= ‘unknown (0x’+hex charcmd+‘ )’; -- default
if (cid bit and 16#80) = 0 then
-- Host! Canon message
r.kind := ‘ request’;
casedeviceof
(camerahead):
casecmdof
(16#04): r.cmd:= ‘Status’;
(16#10): r.cmd:= ‘Focus’;
(16#12): r.cmd:= ‘Zoom’;
(16#14): r.cmd:= ‘Exposure’;
end case;

(pan tilter):
casecmdof
(16#04): r.cmd:= ‘Status’;

240



WEBeye Source Code A.10 vc-decode.setl

(16#10): r.cmd:= ‘Set--up’;
(16#11): r.cmd:= ‘Home position’;
(16#12): r.cmd:= ‘Pan/// tilt’;
(16#17): r.cmd:= ‘Remote controller’;
(16#19): r.cmd:= ‘LED’;
end case;

(ccu):
casecmdof
(16#01): r.cmd:= ‘Software reset’;
(16#04): r.cmd:= ‘Status’;
(16#10): r.cmd:= ‘White balance’;
(16#11): r.cmd:= ‘Fade’;
(16#12): r.cmd:= ‘Mute’;
(16#17): r.cmd:= ‘Control mode select’;
(16#18): r.cmd:= ‘Preset’;
end case;

end case;
else
-- Canon! Host message
if (cid bit and 16#20) = 0 then
-- Response
if (cid bit and 16#40) = 0 then
r.kind := ‘positive response’;

else
r.kind := ‘negative response’;

end if;
casedeviceof
(camerahead):
casecmdof
(16#04): r.cmd:= ‘Status’;
(16#10): r.cmd:= ‘Focus’;
(16#12): r.cmd:= ‘Zoom’;
(16#14): r.cmd:= ‘Exposure’;
end case;

(pan tilter):
casecmdof
(16#04): r.cmd:= ‘Status’;
(16#10): r.cmd:= ‘Set--up’;

241



WEBeye Source Code A.10 vc-decode.setl

(16#11): r.cmd:= ‘Home position’;
(16#12): r.cmd:= ‘Pan/// tilt’;
(16#17): r.cmd:= ‘Remote controller’;
(16#19): r.cmd:= ‘LED’;
end case;

(ccu):
casecmdof
(16#01): r.cmd:= ‘Software reset’;
(16#04): r.cmd:= ‘Status’;
(16#10): r.cmd:= ‘White balance’;
(16#11): r.cmd:= ‘Fade’;
(16#12): r.cmd:= ‘Mute’;
(16#17): r.cmd:= ‘Control mode select’;
(16#18): r.cmd:= ‘Preset’;
end case;

end case;
else
-- Notification
r.kind := ‘notification’;
casedeviceof
(camerahead):
casecmdof
(16#03): r.cmd:= ‘Error’;
(16#11): r.cmd:= ‘Focus limit’;
(16#13): r.cmd:= ‘Zoom limit’;
(16#18): r.cmd:= ‘Button operation’;
end case;

(pan tilter):
casecmdof
(16#03): r.cmd:= ‘Error’;
(16#16): r.cmd:= ‘Limit’;
(16#18): r.cmd:= ‘Remote controller’;
(16#1b): r.cmd:= ‘Power’;
end case;

(ccu):
casecmdof
(16#03): r.cmd:= ‘Error’;
end case;

242



WEBeye Source Code A.10 vc-decode.setl

end case;
if r.cmd= ‘Error’ then
if #frame� 3 then
error type:= abs frame(3);
if #frame� 4 then
error cause:= abs frame(4);

else
error cause:= om;

end if;
[[[r.error type,
r.error cause]]] := decodeerror (error type,

error cause);
end if;

end if r.cmd;
end if (cid bit and 16#20); -- response vs notification

end if (cid bit and 16#80); -- “command” direction

else
-- ack///nak frame
ack nak id := abs frame(2);
if ack nak id = 0 then
r.kind := ‘ack’;
r.detail := ‘Received’;

else
r.kind := ‘nak’;
r.detail := decodenak cause(ack nak id);

end if;

end if (fid bit and 16#80); -- “command” vs ack///nak

return r;

end op decode;

proc decodeerror (error type, error cause);
r error type:= decodeerror type(error type);
r error cause:= om;
if error cause6= om then

243



WEBeye Source Code A.10 vc-decode.setl

caseerror typeof
(16#01): -- Camera communication error
-- The “cause” here is the raw UART(?) status byte
r error cause:= ‘Status register 0x’ + hex charerror cause;

(16#03, 16#04): -- Pan/// tilter or RS-232C comm. error
r error cause:= decodecommerror cause(error cause);
if error cause= 16#00and #frame� 5 then -- NAK
r error cause+:= ‘ (’+decodenak cause(abs frame(5))+‘ )’;

end if;
end case;

end if;
return [[[r error type, r error cause]]];

end proc;

proc decodeerror type(error type);
return caseerror typeof
(16#00): ‘Camera cable is disconnected’,
(16#01): ‘Camera communication error’,
(16#03): ‘Pan/// tilter communication error’,
(16#04): ‘RS--232C communication error’,
(16#10): ‘Command for unconnected device’,
(16#11): ‘Undefined command’,
(16#12): ‘Undefined parameter’,
(16#13): ‘Status error (received command)’,
(16#14): ‘Status error (received parameter)’,
(16#16): ‘Timeout’,
(16#18): ‘White balance correction error’,
(16#19): ‘Pan/// tilt, zoom, focus limit’
else ‘unknown error type (0x’ + hex char error type+ ‘ )’
end case;

end proc;

proc decodecommerror cause(cause);
return casecauseof
(16#00): ‘NAK received’,
(16#01): ‘ACK receive timeout’,
(16#02): ‘Checksum error’,
(16#03): ‘Pan/// tilter is busy’,

244



WEBeye Source Code A.10 vc-decode.setl

(16#04): ‘Fatal error’,
(16#05): ‘Sequence error’,
(16#06): ‘Length error’,
(16#07): ‘Buffer is busy’
else ‘unknown comm. error cause code (0x’ + hex char cause+ ‘ )’
end case;

end proc;

proc decodenak cause(cause);
return casecauseof
(16#01): ‘Buffer busy’,
(16#02): ‘Length error’,
(16#03): ‘Sequence error’,
(16#04): ‘Communication error’,
(16#10): ‘Checksum error’
else ‘unknown NAK cause code (0x’ + hex char cause+ ‘ )’
end case;

end proc;

245



WEBeye Source Code A.11 vc-do.setl

A.11 vc-do.setl

Services provided:
do, used by local clients:

vc-httpd.setl (Section A.19)
vc-jumper.setl (Section A.25)
vc-mouse.setl (Section A.28)
vc-mover.setl (Section A.29)
vc-ptz.setl (Section A.33)
vc-zoomer.setl (Section A.43)

notice, used by local clients:
vc-evjump.setl (Section A.13)
vc-evzoom.setl (Section A.14)
vc-ptz.setl (Section A.33)

Client of service:
event (vc-event.setl, Section A.12)

Called by parent program:
vc-toplev.setl (Section A.42)

Calls child program:
vc-model.setl (Section A.27)

Textually #includes:
vc-allowed.setl (Section A.2)
vc-decode.setl (Section A.10)
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-obtain.setl (Section A.31)
vc-provide.setl (Section A.32)

Source code:

constyhwh= ‘vc--do.setl’;

-- This program provides thedo andnotice services.
--
-- Thedo service is a server interface tomodel, a pumping
-- co-process which maintains a high-level model of the videocamera
-- control state and supports “mid-level” commands (requests already
-- reduced to SETL maps) to alter that state. Besides routing such

246



WEBeye Source Code A.11 vc-do.setl

-- commands from clients into themodel subprocess,do also
-- implements a queuing policy which allows every client that cannot be
-- satisfied immediately to have a command pending, and also prevents
-- further commands from that client from being queued until the
-- pending one has been performed.
--
-- Thenotice service distributes “mid-level” events to all
-- interested clients. These originate as low-level events generated
-- by theevent service and as responses to parameter-changing
-- commands issued to themodel pump.

constmodel pump= ‘exec setl vc--model.setl’;

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals

-- Performer of mid-level commands:
constmodel fd = fileno open(model pump, ‘pump’);

-- Generator of low-level events:
consteventfd = fileno obtain service(‘event’);

constdo server fd = fileno provide service(‘do’);
constnotice server fd = fileno provide service(‘notice’);

var notice clients:= fg; -- map from client fd to client record
var do clients:= fg; -- map from client fd to client record
var do queue:= [[[ ]]]; -- queue of fd’s ofdo clients awaiting service
var do pending:= false; -- true when we await a reply frommodel

open(‘SIGPIPE’, ‘ ignore’); -- as in when we write to closed observers

loop
nonwaiting:= domain do clients� fdo fd : do fd in do queueg;
pool := if do pendingthen fmodel fdg elsefg end if

+ fsigterm fd, eventfd, do server fd, notice server fdg
+ nonwaiting;

[[[ready]]] := select([[[pool]]]);

247



WEBeye Source Code A.11 vc-do.setl

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

for do fd in ready� nonwaitingloop
-- New request from ado client.
reada (do fd, request);
if eof then
do clients(do fd) := om;
close(do fd);

else
do client := do clients(do fd);
do client.request:= request;
do clients(do fd) := do client;
do queuewith := do fd;

end if;
end loop;

if do pendingand model fd in readythen
reada (model fd, model response);
if eof then
msg(‘EOF from ’+str model pump+‘ -- quitting’);
quit gracefully;

end if;
-- These notices can be created by the model pump to let us alert
-- all the observers to parameter changes and special events such
-- as initialization:
for messagein model response.notices? [[[ ]]] loop
tell observers(message); -- tell notice clients

end loop;
do fd fromb do queue;
do client := do clients(do fd);
request:= do client.request;
if request.name= ‘Get’ then
writea (do fd, model response.value);

else
printa (do fd); -- a blank line to say the command has been done

248



WEBeye Source Code A.11 vc-do.setl

end if;
flush (do fd);
do pending:= false;

end if;

if eventfd in readythen
reada (eventfd, frame);
if eof then
msg(‘EOF from ’+filenameeventfd+‘ -- quitting’);
quit gracefully;

else
message:= decodeframe;
tell observers(message); -- tell notice clients

end if;
end if;

if do server fd in readythen
do fd := accept(do server fd);
if do fd 6= om then
name:= getnamedo fd;
if allowed(do fd) then
do client := fg;
do client.name:= name;
do clients(do fd) := do client;

else
close(do fd);
msg(name+‘ denied access to "do" service’);

end if;
end if;

end if;

if notice server fd in readythen
notice fd := accept(notice server fd);
if notice fd 6= om then
name:= getnamenotice fd;
if allowed(notice fd) then
notice client := fg;
notice client.name:= name;

249



WEBeye Source Code A.11 vc-do.setl

notice clients(notice fd) := notice client;
else
close(notice fd);
msg(name+‘ denied access to "notice" service’);

end if;
end if;

end if;

if #do queue> 0 and not do pendingthen
do fd := do queue(1);
do client := do clients(do fd);
request:= do client.request;
writea (model fd, request);
flush (model fd);
do pending:= true;

end if;

end loop;

proc tell observers(message);
for notice client= notice clients(notice fd) loop
clear error ;
writea (notice fd, message);
flush (notice fd); -- eventually causes EPIPE if client closed
if last error 6= no error then
close(notice fd);
notice clients(notice fd) := om;

end if;
end loop;

end proc tell observers;

proc quit gracefully;
exit gracefully([[[[[[str model pump, model fd]]]]]]);

end proc;

#include “vc--provide.setl”
#include “vc--obtain.setl”

250



WEBeye Source Code A.11 vc-do.setl

#include “vc--getname.setl”
#include “vc--allowed.setl”
#include “vc--decode.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

251



WEBeye Source Code A.12 vc-event.setl

A.12 vc-event.setl

Services provided:
event, used by local clientvc-do.setl (Section A.11)
notify, used by local clientvc-seq.setl (Section A.39)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-allowed.setl (Section A.2)
vc-decode.setl (Section A.10)
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-provide.setl (Section A.32)

Source code:

constyhwh= ‘vc--event.setl’;

-- Low-level event notification distributor

var producers, consumers;

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals

-- Producers use this “notify” port to supply events to us:
const in server fd = fileno provide service(‘notify’);

-- Consumers receive events on this “event” port:
constout server fd = fileno provide service(‘event’);

open(‘SIGPIPE’, ‘ ignore’); -- as when we write to closed consumers

producers:= fg;
consumers:= fg;

loop do

[[[ready]]] := select([[[fsigtermfd, in server fd, out server fdg +

252



WEBeye Source Code A.12 vc-event.setl

domain producers]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

for producer= producers( fd) jjj fd in readyloop
reada ( fd, event);
if eof then
close( fd);
producers( fd) := om;

else
tell consumers(event);

end if;
end loop;

if in server fd in readythen
fd := accept(in server fd);
if fd 6= om then
name:= getnamefd;
if allowed( fd) then
producer:= fg;
producer.name:= name;
producers( fd) := producer;

else
msg(name+‘ not allowed as event producer’);
close( fd);

end if;
end if;

end if;

if out server fd in readythen
fd := accept(out server fd);
if fd 6= om then
name:= getnamefd;
if allowed( fd) then
consumer:= fg;

253



WEBeye Source Code A.12 vc-event.setl

consumer.name:= name;
consumers( fd) := consumer;

else
msg(name+‘ not allowed as event consumer’);
close( fd);

end if;
end if;

end if;

end loop;

proc tell consumers(event);
for consumer= consumers( fd) loop
clear error ;
writea ( fd, event);
flush ( fd); -- should eventually cause EPIPE if client closed
if last error 6= no error then
msg(‘consumer ’+consumer.name+‘ done’);
close( fd);
consumers( fd) := om;

end if;
end loop;

end proc;

proc quit gracefully;
-- Degenerate, since we currently have no pump- or pipe-attached child
exit gracefully([[[ ]]]);

end proc;

#include “vc--provide.setl”
#include “vc--getname.setl”
#include “vc--allowed.setl”
#include “vc--decode.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

254



WEBeye Source Code A.13 vc-evjump.setl

A.13 vc-evjump.setl

Service provided:
evjump

Client of service:
notice (vc-do.setl, Section A.11)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-javent.setl (Section A.23)

Source code:

constyhwh= ‘vc--evjump.setl’;

-- Serve motion events in a very simple form designed for Java clients

-- The name of the service we provide:
#defineeventtype‘evjump’

-- Initial tokens of the event type we look for:
constof interest= [[[‘Move’, ‘ To’ ]]];

-- The numbers represent pan (azimuth) and tilt (elevation):
constn parms= 2;

#include “vc--javent.setl”

255



WEBeye Source Code A.14 vc-evzoom.setl

A.14 vc-evzoom.setl

Service provided:
evzoom

Client of service:
notice (vc-do.setl, Section A.11)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-javent.setl (Section A.23)

Source code:

constyhwh= ‘vc--evzoom.setl’;

-- Serve zoom events in a very simple form designed for Java clients

-- The name of the service we provide:
#defineeventtype‘evzoom’

-- Initial tokens of the event type we look for:
constof interest= [[[‘Zoom’ ]]];

-- The number represents the zoom factor:
constn parms= 1;

#include “vc--javent.setl”

256



WEBeye Source Code A.15 vc-exit.setl

A.15 vc-exit.setl

Textually #included by:
vc-camera.setl (Section A.4)
vc-do.setl (Section A.11)
vc-event.setl (Section A.12)
vc-giver.setl (Section A.17)
vc-httpd.setl (Section A.19)
vc-image.setl (Section A.20)
vc-javent.setl (Section A.23)
vc-model.setl (Section A.27)
vc-mouse.setl (Section A.28)
vc-ptz.setl (Section A.33)
vc-push.setl (Section A.34)
vc-recv.setl (Section A.36)
vc-seq.setl (Section A.39)
vc-simpler.setl (Section A.40)
vc-snap.setl (Section A.41)

Source code:

-- Send SIGTERM signals to all processes listed innamefd pairs
-- asking them to quit, and then quit the current process viastop.
-- First we ask politely, and if that doesn’t work, we force the issue.

proc exit gracefully(namefd pairs);
var sigchld fd, name, fd, id, wid, moniker, ready, line, exited;
sigchld fd := open(‘SIGCHLD’, ‘ signal’); -- catch CHLD signals
exited:= fg;
for [[[name, fd]]] in namefd pairs loop
if fd 6= om then
id := pid ( fd);
moniker:= name+ ‘ (pid ’ + str id + ‘ )’;
msg(‘TERMinating ’ + moniker);
clear error ;
kill (id); -- send SIGTERM
if last error = no error then
-- The subprocess either existed or was already a zombie.

257



WEBeye Source Code A.15 vc-exit.setl

-- First try to clear it quickly. If the process existed
-- when the signal was sent, we will receive a SIGCHLD as
-- soon as it manages to exit, and the followingselect
-- will then unblock. If the process was already a zombie,
-- thisselectwill only hold up the show for 50 ms, as it
-- will if the process exists but does not exit that quickly:
[[[ready]]] := select([[[fsigchld fdg]]], 50);
if sigchld fd in readythen
line := getlinesigchld fd;

end if;
-- If the process has exited (and is therefore now a zombie
-- unless it has already been waited for), it can be cleared
-- from the process table and added to ourexitedset:
while (wid := wait (false)) > 0 loop
exitedwith := wid;

end loop;
if id in exitedthen
-- The subprocess has exited, so we can safely callclose
-- on its file descriptor without blocking, and carry on.
close( fd);
continue for [[[name, fd]]] in namefd pairs loop; -- next!

end if;
if sigchld fd notin readythen
-- We have no indication of the subprocess having exited yet.
-- Give it a bit more time. We didn’t want to start out
-- this way, because if the subprocess had already been a
-- zombie, we would have waited the full 1414 ms:
[[[ready]]] := select([[[fsigchld fdg]]], 1414);
if sigchld fd in readythen
line := getlinesigchld fd;

end if;
while (wid := wait (false)) > 0 loop
exitedwith := wid;

end loop;
if id in exitedthen
close( fd);
continue for [[[name, fd]]] in namefd pairs loop; -- next!

end if;

258



WEBeye Source Code A.15 vc-exit.setl

end if;
-- The subprocess seems reluctant to exit. Hit it harder.
msg(‘KILLing ’ + moniker);
kill (id, ‘KILL’); -- send SIGKILL
[[[ready]]] := select([[[fsigchld fdg]]], 100);
if sigchld fd in readythen
line := getlinesigchld fd;

end if;
while (wid := wait (false)) > 0 loop
exitedwith := wid;

end loop;
if id in exitedthen
close( fd);
continue for [[[name, fd]]] in namefd pairs loop; -- next!

end if;
-- This probably indicates a bug in the host OS
msg(‘��������� ’ + moniker+ ‘ failed to exit on KILL signal’);

else
msg(‘��������� ’ + moniker+ ‘ not found’);

end if;
end if;

end loop;
close(sigchld fd);
msg(yhwh+ ‘ (’ + str pid + ‘ ) exiting’);
stop;

end proc;

259



WEBeye Source Code A.16 vc-getname.setl

A.16 vc-getname.setl

Textually #included by:
vc-camera.setl (Section A.4)
vc-do.setl (Section A.11)
vc-event.setl (Section A.12)
vc-giver.setl (Section A.17)
vc-httpd.setl (Section A.19)
vc-image.setl (Section A.20)
vc-javent.setl (Section A.23)
vc-mouse.setl (Section A.28)
vc-ptz.setl (Section A.33)
vc-push.setl (Section A.34)
vc-simpler.setl (Section A.40)
vc-snap.setl (Section A.41)
vc-toplev.setl (Section A.42)

Source code:

-- Return the best available identifier of a client, including the
-- IP name if possible (otherwise just the IP address) followed by
-- a colon and the remote (usually ephemeral) port number.

op getname( fd);
return (peer name fd ?peer addressfd ? ‘ANONYMOUS’) + ‘ :’ +

str peer port fd;
end op;

260



WEBeye Source Code A.17 vc-giver.setl

A.17 vc-giver.setl

Service provided:
giver

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-obtain.setl (Section A.31)
vc-provide.setl (Section A.32)

Source code:

constyhwh= ‘vc--giver.setl’;

-- This makes up and gives out a stream of URLs for a stream of
-- JPEGs. It should go away when when the more civilized Java API
-- (1.2) is widely available.

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals
constgiver fd = fileno provide service(‘giver’);

var clients:= fg;

loop

[[[ready]]] := select([[[fsigtermfd, giver fdg + domain clients]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

for client= clients(pumpfd) jjj pump fd in readyloop
done client (pump fd);

end loop;

261



WEBeye Source Code A.17 vc-giver.setl

if giver fd in readythen
fd := accept(giver fd);
if fd 6= om then
name:= getnamefd;
msg(name+‘ accepted’);
pump fd := pump();
if pump fd = �1 then
-- child
[[[serv name, serv port]]] := find service(‘snap’);
serv name(‘ localhost’) := hostaddr; -- for public consumption
pfx := ‘http:////// ’+serv name+‘ :’+str serv port+‘ /// ?seq=’;
i := 0;
while (line := getline fd) 6= om and

split (line) = [[[‘JPEG’ ]]] loop
i +:= 1;
name:= str i;
printa ( fd, pfx+name);

end loop;
stop;

end if;
close( fd); -- child hangs onto this
client := fg;
client.name:= name;
clients(pumpfd) := client;

end if;
end if;

end loop;

proc done client (pump fd);
msg(clients(pumpfd).name+ ‘ done’);
close(pump fd);
clients(pump fd) := om;

end proc done client;

proc quit gracefully;
exit gracefully([[[[[[‘pump for client ’ + client.name, pump fd]]] :

client= clients(pump fd)]]]);

262



WEBeye Source Code A.17 vc-giver.setl

end proc;

#include “vc--provide.setl”
#include “vc--obtain.setl”
#include “vc--getname.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

263



WEBeye Source Code A.18 vc-go.setl

A.18 vc-go.setl

Called by parent program:
vc-restart.setl (Section A.37)

Calls child program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-admin.setl (Section A.1)

Source code:

constyhwh= ‘vc--go.setl’;

-- Start the Box

constmy lock= ‘vc--going’; -- lock file (mutex)
constvc lock= ‘vc--lock’; -- Box’s lock file
constvc log = ‘vc--log’; -- Box’s log file
constvc cmd = ‘exec setl vc--toplev.setl’; -- Box’s top-level program
constvc link = ‘vc--link.html’; -- eventually points to pseudo-document
constvc prefix= ‘CGIjjj’; -- pseudo-document “magic” convention
constvc health= ‘vc--tcp/// health’; -- host:port for Box’s health check

var box locktext;

commence; -- acquire mutex or exit abnormally right away

interactive:= system(‘ tty --s’) = 0;

if (box locktext:= readlink vc lock) 6= om then
if interactivethen
printa (stderr, “The Box’ s lock file still exists:”);
printa (stderr, render link (vc lock, box locktext));
putc (stderr, ‘Shall I forcibly remove it? [n/// y] ’);
if yes(‘no’) then
clear error ;
unlink (vc lock);

264



WEBeye Source Code A.18 vc-go.setl

if last error = no error then
printa (stderr, ‘Lock file ’ + vc lock+ ‘ removed.’);

else
printa (stderr, ‘Error " ’ + last error + ‘ " trying to remove ’ +

vc lock+ ‘ .’);
msg(‘Abending.’);
finis (1);

end if;
else
printa (stderr, ‘Lock file ’ + vc lock+ ‘ not removed.’);
msg(‘Exiting.’);
finis (0);

end if;
else
msg(“Error -- Box’ s lock file still exists:”);
msg(render link (vc lock, box locktext));
msg(‘Abending without starting the Box.’);
finis (1);

end if;
end if;

if fexists vc log then
if interactivethen
printa (stderr, ‘The log file ’ + vc log + ‘ already exists.’);
putc (stderr, ‘Go ahead and clobber it? [n/// y] ’);
if yes(‘no’) then
printa (stderr, ‘Okay, ’ + str vc cmd+ ‘ will clobber ’ +

vc log + ‘ .’);
else
printa (stderr, ‘Okay, log file left intact.’);
printa (stderr, “Try ’ vc--restart’ in order to save it and then”);
printa (stderr, ‘start the Box again.’);
msg(‘Exiting.’);
finis (0);

end if;
else
msg(‘Warning -- ’ + str vc cmd+ ‘ will clobber ’ +

vc log + ‘ .’);

265



WEBeye Source Code A.18 vc-go.setl

end if;
end if;

full cmd:= vc cmd+ ‘ >>> ’ + vc log + ‘ 2>>>&1’;
msg(‘Starting ’ + str full cmd+ ‘ in the background ...’);
system( full cmd+ ‘ &’);

-- Wait for Box’s lock to reappear
loop for msin f10,20.. 250g while not lexistsvc lock do
select(om, ms); -- 10+ 20+ . . . + 250 ms = 3.25 sec

end loop;
if (box locktext:= readlink vc lock) = om then

failure (‘Box failed to create lock file ’ + vc lock+ ‘ .’);
end if;
if interactivethen
printa (stderr, ‘Box has succeeded in creating its lock file:’);
printa (stderr, render link (vc lock, box locktext));

end if;

-- Wait to see pseudo-document indicating that Box is up and available
--- magic-constants file? vc-limits.setl?
interval := 100; -- ms
limit := 100000; -- ms
if interactivethen
printa (stderr, ‘Box initializing ... please wait (up to ’ +

str (limit=1000) + ‘ sec.)’);
end if;
loop for msin finterval,2�interval.. limitg doing

flag := (content:= getfile vc link) 6= om and
match (content, vc prefix) = vc prefix;

while not flagdo
select(om, interval);
if interactivethen
putc (stderr, fixed (ms=1000, 6, 1) + ‘ sec.\\\ r’);

end if;
end loop;
if interactivethen
printa (stderr);

266



WEBeye Source Code A.18 vc-go.setl

end if;
if not flag then

failure (box() + ‘ failed to reach " running" state.’);
end if;

-- Try to exercise its health check
if (hp := getfilevc health) = om then

failure (box() + ‘ failed to create file ’ + str vc health+ ‘ .’);
end if;
-- hp is now the host:port designation of the health-check service
if ( fd := open(hp, ‘socket’)) = om then

failure (box() + ‘ failed to open health--check service at ’ + hp+ ‘ .’);
end if;
if (line := getline fd) 6= ‘ok’ then

failure (box() + ‘ failed health check, reason = ’ + str line);
end if;
close( fd);

msg(box() + ‘ appears to be up and running normally.’);
msg(‘Done.’);
if interactivethen
printa (stderr, ‘You may wish to " tail --f ’ + vc log +

‘ " for a while.’);
end if;
finis (0); -- release mutex and exit normally

proc yes(default);
[[[ans]]] := split (getline stdin);
ans?:= default;
return to lower ansin f‘y’, ‘ yes’g;

end proc;

-- Fancy Box identifier
proc box();
return ‘Box f’ + render link (vc lock, box locktext) + ‘g’;

end proc;

267



WEBeye Source Code A.18 vc-go.setl

proc failure (message);
msg(message);
msg(‘Abending.’);
finis (1);

end proc;

#include “vc--admin.setl”

268



WEBeye Source Code A.19 vc-httpd.setl

A.19 vc-httpd.setl

Service provided:
httpd

Client of service:
do (vc-do.setl, Section A.11)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-obtain.setl (Section A.31)
vc-provide.setl (Section A.32)
webutil.setl (Section A.44)

Source code:

constyhwh= ‘vc--httpd.setl’;

-- This program thinks it is a little Web server. It “instantiates”
-- the local filevc-template.html by substituting parameters (some
-- of which typically come from imagemap mouse clicks via a URL) for
-- keywords, and presents the result as HTTP-wrapped HTML. The latter
-- in turn contains a reference to the server-push JPEG image producer
-- (thepush service) and a self-reference that browsers usually
-- decorate with pixel locations when the imagemap is clicked.
--
-- It also sends camera control commands to thedo service based on
-- those click parameters and the current state.

constwant nonsense= false; -- true if you have no Canon hardware

constwidth= 320;
constheight= 240;
--- These constants should go into a file, say vc-limits.setl, which
--- is #included by everything that uses them:
constpanlo= �90;
constpanhi= 90;

269



WEBeye Source Code A.19 vc-httpd.setl

consttiltlo = �30;
consttilthi = 25;
constmin zoom= 1;
constmax zoom= 10;

constpi = 2 � asin1;
const fmin= �1;
const fmax= 1;
constgmin= �1;
constgmax= 1;
constnsamp= 12; -- how many segments in the “circle”

-- This flag determines how the camera is controlled during
-- client inactivity:
constmethod= ‘move’; -- ‘ move’ or ‘ speed’

constwant iato = false; -- want inactivity timeout or not
consttick = if method= ‘move’ then 5000else3000end if; -- ms
const inactivity timeout= round (60� 1000= tick); -- 60 sec

constdo fd = fileno if want nonsensethen
open(getfile ‘nonsense.tcp’, ‘ socket’)

else
obtain service(‘do’)

end if;

consttimer fd = if want iato then
open(str tick, ‘real--ms’)

else
om

end if;

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals

consthttpd fd = fileno provide service(‘httpd’);

var clients:= fg;

270



WEBeye Source Code A.19 vc-httpd.setl

cycling:= want iato;
ticker := 0;
r := 1; -- starting “radius”

do ramp(500);
zoom:= do get(‘zoom factor’);

loop

[[[ready]]] := select([[[fsigtermfd, httpd fd, timer fdg +
domain clients]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

for client= clients(pumpfd) jjj pump fd in readyloop
geta(pump fd, action);
if action= ‘clicked’ then
if cyclingthen
if method= ‘speed’ then
do movestop;

end if;
cycling:= false;

end if;
reada (pump fd, zoomscale, pan,tilt );
if zoomscale� 1 then
do zoomby (zoomscale);
do moveby (pan,tilt );

else
do moveby (pan,tilt );
do zoomby (zoomscale);

end if;
end if;
if action= ‘new’ then
if want iato then
zoom:= 1 + random 2.0;

271



WEBeye Source Code A.19 vc-httpd.setl

do zoomto (zoom);
if method= ‘speed’ then
do movestart;

end if;
cycling:= true;

end if;
end if;
if action= ‘ initial’ then
if cyclingthen
if method= ‘speed’ then
do movestop;

end if;
cycling:= false;

end if;
reada (pump fd, old zoom, zoom, pan,tilt );
if zoom� old zoomthen -- like zoomscale� 1 above
do zoomto (zoom);
do moveto (pan,tilt );

else
do moveto (pan,tilt );
do zoomto (zoom);

end if;
end if;
done client (pump fd);

end loop;

if httpd fd in readythen -- new client
fd := accept(httpd fd);
if fd 6= om then
name:= getnamefd;
msg(name+‘ accepted’);
[[[old pan,old tilt ]]] := do get(‘position’);
--- confusing use of variable names (zoom, butold panetc.):
zoom:= do get(‘zoom factor’);
pump fd := pump();
if pump fd = �1 then
-- child (pumping co-process);
[[[uri, protocol,mime headers]]] := get request( fd);

272



WEBeye Source Code A.19 vc-httpd.setl

mu:= massageuri uri ?fg;
protocol?:= ‘’;
mu.cmd?:= ‘JPEG’;
if mu.click= om then
mu.topblurb := ‘Try clicking in this image!\\\ n’+

‘<<<p>>>\\\ n\\\ n’+
‘PWM EQUIV\\\ n’+
‘<<<p>>>’;

-- Let explicit initial pan, tilt, and zoom specifications
-- from the URL override the “old” settings that would
-- otherwise be initially used:
old zoom:= zoom; --- is “old” (see “confusing” above)
zoom:= mu.zoom?old zoom;
pan:= mu.pan?old pan;
tilt := mu.tilt ?old tilt ;
mu.pwm:= ‘ Initial pan = ’+fixed(pan,0,1)+‘ deg, ’+

‘ tilt = ’+fixed(tilt,0,1)+‘ deg\\\ n<<<p>>>’+
‘ Initial zoom factor = ’+fixed(zoom,0,2)+‘ \\\ n<<<p>>>’;

if mu.zoom?mu.pan?mu.tilt= om then
print (‘new’);

else
print (‘ initial’);
print (old zoom, zoom, pan,tilt );

end if;
else
--- N.B. For the Canon, I will abuse PWMEQUIV just to
--- quote pan and tilt in degrees.
mu.topblurb := ‘Clicked at: ’+str mu.click+‘ \\\ n’+

‘<<<p>>>\\\ n\\\ n’+
‘PWM EQUIV\\\ n’+
‘<<<p>>>’;

[[[x,y]]] := mu.click;
pan norm:= (x� width=2) = (width=2);
tilt norm:= (height=2� y) = (height=2);
dist norm := sqrt (pan norm��2 + tilt norm��2);
zoomscale:= 1.618�� (2� 4�dist norm);
pan:= pan norm� 40= zoom;
tilt := tilt norm� 30= zoom;

273



WEBeye Source Code A.19 vc-httpd.setl

-- This string replaces PWMEQUIV in the HTML template:
req pan:= old pan+ pan;
req tilt := old tilt + tilt ;
req zoom:= zoom� zoomscale;
pan tilt clamp blurb :=
if req pan< �90or req pan> 90or

req tilt < �30or req tilt > 25 then
‘<<<br>>>clamped to [’+fixed(req panmax�90min 90,0,1)+‘ ’ +

fixed(req tilt max�30min 25,0,1)+‘ ]\\\ n’
else‘’
end if;

zoomclamp blurb :=
if req zoom< min zoomor req zoom> max zoomthen
‘<<<br>>>clamped to ’+fixed(req zoom

max min zoom
min max zoom,0,2)+‘ \\\ n’

else‘’
end if;

mu.pwm:= ‘Requested pan = ’+fixed(req pan,0,1)+‘ deg, ’+
‘ tilt = ’+fixed(req tilt,0,1)+‘ deg\\\ n’+

‘<<<br>>>(delta pan = ’+fixed(pan,0,1)+‘ deg, ’+
‘ tilt = ’+fixed(tilt,0,1)+‘ deg)\\\ n’+

pan tilt clamp blurb+‘<<<p>>>’+
‘Requested zoom factor = ’+

fixed(req zoom,0,2)+‘ \\\ n’+
‘<<<br>>>(’+fixed(zoom,0,2)+‘ scaled by ’+

fixed(zoomscale,0,3)+‘ )\\\ n’+
zoomclamp blurb+‘<<<p>>>’;

print (‘clicked’);
print (zoomscale, pan,tilt );

end if;
html := instantiate(getfile ‘vc--template.html’, mu);
spewhtml ( fd, html, protocol);
stop;

end if;
-- parent continues here
close( fd); -- child deals with this clientfd
client := fg;

274



WEBeye Source Code A.19 vc-httpd.setl

client.pumpfd := pump fd;
client.name:= name;
clients(pumpfd) := client;

end if;
end if;

if timer fd 6= om and timer fd in readythen
ticker+:= 1;
geta(timer fd, dummy);
if cyclingthen
-- Clock the camera through some pattern during client inactivity
-- (note that this cycling only happens ifwant iato= true)
if ticker mod nsamp= 0 then
r := 0.2+ random 0.8;
zoom:= 1 + random 4.0;
do zoomto (zoom);

end if;
x := (ticker mod nsamp) = nsamp; -- a real in [0..1)
y := (pan cycle(x) � fmin) = ( fmax� fmin); -- also normalized
z := y � (panhi� panlo) + panlo; -- scaled to output range
pan:= r � z;
y := (tilt cycle(x) � gmin) = (gmax� gmin); -- also normalized
z := y � (tilthi � tiltlo) + tiltlo ; -- scaled to output range
tilt := r � z;
if method= ‘move’ then
s := max zoom=zoom;
t := 4=zoom;
do moveto (pan+ (random s� s=2),

tilt + (random t � t=2));
elseifmethod= ‘speed’ then
do movespeed(pan=10+ (random 4.0� 2.0),

tilt=10+ (random 1.2� 0.6));
end if;

elseifwant iato and ticker= inactivity timeoutthen
ticker := random nsamp;
zoom:= 1 + random 2.0;
do zoomto (zoom);
if method= ‘speed’ then

275



WEBeye Source Code A.19 vc-httpd.setl

do movestart;
end if;
cycling := true;

end if;
end if;

end loop;

proc spewhtml ( fd, html, protocol);
if (to upper protocol)(‘ˆ HTTP’) 6= om then
printa ( fd, ‘HTTP/// 1.0 200 OK’);
printa ( fd, ‘Server: WEBeye’);
printa ( fd, ‘Expires: 0’);
printa ( fd, ‘Pragma: no--cache’);
printa ( fd, ‘Content--type: text/// html’);
printa ( fd, ‘Content--length: ’+str #html);
printa ( fd);

end if;
putc ( fd, html);
flush ( fd);

end proc spewhtml;

proc instantiate(template, mu);
gsub(template, ‘DATE’, fdate(tod));
gsub(template, ‘TOP BLURB’, mu.topblurb);
gsub(template, ‘PWM EQUIV’, mu.pwm); -- must go after TOPBLURB sub.
gsub(template, ‘WEB HOME’, hostaddr);
-- Look ourselves up, even thoughport httpd fd should be the same
-- as the looked-up httpd port, for consistency with the others (and
-- as a sort of silly doublecheck):
gsub(template, ‘HTTPD HOME’, public service(‘httpd’));
gsub(template, ‘VIDEO HOME’, public service(‘push’));
gsub(template, ‘CAMERA TCP’, public service(‘camera’));
gsub(template, ‘ /// MAX RATE’, if mu.rate= om then ‘’ else

‘ /// rate=’+str mu.rateend);
return template;

end proc instantiate;

276



WEBeye Source Code A.19 vc-httpd.setl

-- Look up a service name and present it as host:port for the public:
proc public service(name);
[[[serv name, serv port]]] := find service(name);
if serv name= ‘ localhost’ then
serv name:= hostaddr;

end if;
return serv name+‘ :’+str serv port;

end proc;

proc pan cycle(x);
return sin (2�pi�x);

end;

proc tilt cycle(x);
return cos (2�pi�x);

end;

proc new cmd(name);
cmd:= fg;
cmd.name:= name;
return cmd;

end proc;

proc do cmd(cmd);
writea (do fd, cmd);
geta(do fd, responseline);
return responseline;

end proc;

proc do ramp(ms);
cmd:= new cmd(‘Ramp’);
cmd.ms:= ms;
do cmd(cmd);

end proc;

proc do moveto (pan,tilt );
do move(‘To’, pan,tilt );

end proc;

277



WEBeye Source Code A.19 vc-httpd.setl

proc do moveby (pan,tilt );
do move(‘By’, pan,tilt );

end proc;

proc do move(toby, pan,tilt );
cmd:= new cmd(‘Move’);
cmd.subcmd:= toby;
cmd.pan:= pan;
cmd.tilt := tilt ;
do cmd(cmd);

end proc;

proc do movestart;
cmd:= new cmd(‘Move’);
cmd.subcmd:= ‘Start’;
do cmd(cmd);

end proc;

proc do movestop;
cmd:= new cmd(‘Move’);
cmd.subcmd:= ‘Stop’;
do cmd(cmd);

end proc;

proc do movespeed(pan speed, tilt speed);
cmd:= new cmd(‘Move’);
cmd.subcmd:= ‘Speed’;
cmd.panspeed:= pan speed;
cmd.tilt speed:= tilt speed;
do cmd(cmd);

end proc;

proc do zoomto ( factor);
cmd:= new cmd(‘Zoom’);
cmd.subcmd:= ‘To’;
cmd.zoomfactor := factor;
do cmd(cmd);

278



WEBeye Source Code A.19 vc-httpd.setl

end proc;

proc do zoomby (scale);
cmd:= new cmd(‘Zoom’);
cmd.subcmd:= ‘By’;
cmd.zoomscale:= scale;
do cmd(cmd);

end proc;

proc do get(what);
cmd:= new cmd(‘Get’);
cmd.what:= what;
return unstr do cmd(cmd);

end proc;

proc done client (pump fd);
msg(clients(pumpfd).name+ ‘ done’);
close(pump fd);
clients(pump fd) := om;

end proc done client;

proc quit gracefully;
exit gracefully([[[[[[‘pump for client ’ + client.name, pump fd]]] :

client= clients(pump fd)]]]);
end proc;

#include “vc--provide.setl”
#include “vc--obtain.setl”
#include “vc--getname.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”
#include “webutil.setl”

279



WEBeye Source Code A.20 vc-image.setl

A.20 vc-image.setl

Service provided:
image, used by local clients:

vc-push.setl (Section A.34)
vc-snap.setl (Section A.41)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-allowed.setl (Section A.2)
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-provide.setl (Section A.32)

Source code:

constyhwh= ‘vc--image.setl’;

-- This server, when it has more than 0 clients connected, keeps an
-- “image pump” maximally busy making images, and sends each new image
-- out to all the ready clients as it arrives. It also sends this
-- image to clients that become ready before the next one is made.
--
-- This server is intended for “local” use and trusts its clients
-- (probably the children of some higher-level server) to be ready to
-- take a whole image when they send a command line. (Currently the
-- only command supported is JPEG, and takes no parameters.) It
-- checks to make sure clients are on the local host, whence the trust.
--
-- Each image is prefaced by a single line of all decimal digits
-- stating the number of bytes in the image that follows. The client
-- should read that count withreada (or fscanf in C) in case I take
-- the option of appending a newline to the image (which I currently
-- don’t, but legally could).
---
--- Now that I am having vc-push.setl, for example, bash away at this
--- thing, I will temporarily (:-) start leaving the image pump open
--- “permanently”.

280



WEBeye Source Code A.20 vc-image.setl

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals
constserver fd = fileno provide service(‘ image’);

var image fd := om; -- image pump fd
var clients:= fg;

imageerrors := 0;
awaiting image:= false;
current image:= ‘’;
imagenum:= 0;

loop

[[[ready]]] := select([[[fsigtermfd, server fd, image fdg +
domain clients]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

for client= clients(client fd) jjj client fd in readyloop
if (line := getlineclient fd) 6= om and

#(t := split (line)) = 1 and
t(1) = ‘JPEG’ then
n := #current image;
if n> 0 and client.imagenum 6= image numthen
sendimage(client, current image, image num);

else
client.waiting:= true;

end if;
clients(client fd) := client;

else
close(client fd);
name:= client.name;
imagecount:= client.imagecount;
-- Restore this message when we get the JPEG “streaming”:

281



WEBeye Source Code A.20 vc-image.setl

-- time spent:= (clock� client.start time) = 1000;
-- msg(name+‘ done after ’+fixed(time spent,0,1)+‘s ’+
-- ‘ (’+fixed(image count= time spent,0,1)+‘ fps)’);

clients(client fd) := om;
end if;

end loop;

if image fd 6= om and image fd in readythen
reada (image fd, n);
if n = om then
msg(‘ image error -- n is OM -- check /// var/// log/// messages for clues’);
close(image fd);
current image:= ‘’; -- don’t want to re-use old image after this
if (imageerrors+:= 1) < 10 then
image fd := open imagepump();
awaiting image:= false;

else
msg(str imageerrors+‘ image errors in a row -- bye!’);
stop imageerrors;

end if;
else
image:= getn (image fd, n);
if #image6= n then
imageerrors+:= 1;
msg(‘ image error -- size ’+str #image+‘ /// = ’+str n);

else
imageerrors := 0;
current image:= image;
imagenum+:= 1;
for client= clients(client fd) jjj client.waitingloop
sendimage(clients(client fd), current image, image num);

end loop;
end if;

end if;
awaiting image:= false;

end if;

if server fd in readythen

282



WEBeye Source Code A.20 vc-image.setl

client fd := accept(server fd);
if client fd 6= om then
name:= getnameclient fd;
if allowed(client fd) then

-- Restore this message when we get the JPEG “streaming”:
-- msg(name+‘ accepted’);

clients(client fd) := new client (client fd, name);
else
msg(‘untrusted client ’+name+‘ refused’);
close(client fd);

end if;
end if;

end if;

if image fd = om and #clients> 0 then
image fd := open imagepump();
awaiting image:= false;
-- Restore this code when we get the JPEG “streaming”:

--elseif image fd 6= om and #clients= 0 then
-- msg(‘closing image pump, image fd = ’+str image fd);
-- close(image fd);
-- image fd := om;
-- current image:= ‘’; – it is “old” or soon will be
end if;

if image fd 6= om and notawaiting imagethen
printa (image fd,‘JPEG’);
awaiting image:= true;

end if;

end loop;

proc open imagepump();
image fd := open(‘ image--pump’,‘ pump’) ? open(‘busy--pump’,‘ pump’);
if image fd = om then
msg(‘cannot open image pump -- bye!’);
quit gracefully;

end if;

283



WEBeye Source Code A.20 vc-image.setl

return image fd;
end proc;

proc new client (client fd, name);
client := fg;
client.client fd := client fd;
client.last num:= 0;
client.waiting:= false;
client.start time:= clock;
client.imagecount:= 0;
client.name:= name;
return client;

end proc;

proc sendimage(rw client, image, imagenum);
client fd := client.client fd;
printa (client fd, #image);
putc (client fd, image);
flush (client fd);
client.imagenum:= image num;
client.imagecount+:= 1;
client.waiting:= false;

end proc;

proc quit gracefully;
exit gracefully([[[if image fd = om then om

else[[[str filename image fd, image fd]]]
end if]]]);

end proc;

#include “vc--provide.setl”
#include “vc--getname.setl”
#include “vc--allowed.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

284



WEBeye Source Code A.21 vc-init.setl

A.21 vc-init.setl

Called by parent program:
vc-send.setl (Section A.38)

Calls child program:
vc-comdev.setl (Section A.7)

Source code:

constyhwh= ‘vc--init.setl’;

-- Initialize the serial device

com dev:= command line(1) ?filter (‘exec setl vc--comdev.setl’);

printa (stderr, yhwh, ‘begins’);

fd := open(‘com.settings’, ‘ r’);
if fd 6= om then
s := getline fd;
close( fd);

else
s := ‘0:0:800004fd:0:3:1c:7f:15:4:0:1:0:11:13:1a:0:12:f:17:16:0:0:73’;

end if;
system(‘stty ’ + s+ ‘ <<< ’ + com dev);
system(‘stty --a <<< ’ + com dev+ ‘ >>>&2’);

printa (stderr, yhwh, ‘ends’);

285



WEBeye Source Code A.22 vc-input.setl

A.22 vc-input.setl

Called by parent program:
vc-recv.setl (Section A.36)

Calls child program:
vc-comdev.setl (Section A.7)

Textually #includes:
vc-msg.setl (Section A.30)

Source code:

constyhwh= ‘vc--input.setl’;

-- The existence of this program is predicated on the idea that it is
-- bad to ignore the input serial line for too long, and that when the
-- parent is ready to read the bytes we have so alertly collected, its
-- system-level read is eager to swallow at least as many bytes as
-- have accumulated, up to some absurdly generous limit. When a Unix
-- pipe fd goes ready to accept output, for example, the typical kernel
-- is prepared to accept 8192 bytes without blocking.
--
-- As for not depending on the kernel to buffer up lots of input bytes
-- if you get unthinkably behind, that probably is excessive paranoia
-- in retrospect. So you could probably do without this program, and
-- just havevc-recv.setl read directly from the device. Meanwhile,
-- it’s nice to know that it can probably buffer up to 8 seconds’ worth
-- of bytes at 1000/// sec and never spend so long writing that out that
-- it ignores the input for very long.

-- This program is normally invoked fromvc-input, which is
-- simply a setuid’d wrapper compiled from a C program containing
--
-- main() f
-- execl("$(SETL)", "setl", "vc-input.setl", 0);
-- g
--
-- where$(SETL) has been substituted with the absolute pathname of
-- the ‘setl’ program (the SETL driver) by the Makefile.

286



WEBeye Source Code A.22 vc-input.setl

com dev:= command line(1) ?filter (‘exec setl vc--comdev.setl’);
com fd := fileno open(com dev, ‘r’);
s := ‘’;
ready for output:= false;
loop
input pool := fcom fdg;
output pool := if ready for outputthen fg elsefstdoutg end if;
[[[in ready, out ready]]] := select([[[input pool, output pool]]]);
if #in ready> 0 then
c := getc(com fd);
if c 6= om then
s+:= c;

else
-- On EOF (which “clear” can cause), just close and reopen
close(com fd);
select(om, 300); -- wait 300 ms before reopening
com fd := fileno open(com dev, ‘r’);

end if;
end if;
if #out ready> 0 then
ready for output:= true;

end if;
if #s> 0 and ready for outputthen
putchar (s);
flush (stdout);
s := ‘’;
ready for output:= false;

end if;
end loop;

#include “vc--msg.setl”

287



WEBeye Source Code A.23 vc-javent.setl

A.23 vc-javent.setl

Textually #included by:
vc-evjump.setl (Section A.13)
vc-evzoom.setl (Section A.14)

Textually #includes:
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-obtain.setl (Section A.31)
vc-provide.setl (Section A.32)

Source code:

-- This file is meant to be#included by others, after they define:
--
-- yhwh - the name of the program that#includes this code
-- eventtype - the name of the service being provided
-- of interest - the command tokens we look for
-- n parms - how many parameters after the command tokens to expect

constn = #of interest;

constnotice fd = fileno obtain service(‘notice’);
constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals
constserver fd = fileno provide service(eventtype);

var clients:= fg;
var current event:= om;

open(‘SIGPIPE’, ‘ ignore’); -- as when we write to closed observers

loop

[[[ready]]] := select([[[fsigtermfd, server fd, notice fdg +
domain clients]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);

288



WEBeye Source Code A.23 vc-javent.setl

quit gracefully;
end if;

for client= clients(pumpfd) jjj pump fd in readyloop
ack := getlinepump fd;
if eof then
doneclient (pump fd);

else
if client.last event6= current eventthen
tell client (pump fd, current event);

else
clients(pumpfd).hungry:= true;

end if;
end if;

end loop;

if server fd in readythen
fd := accept(server fd);
if fd 6= om then
name:= getnamefd;
msg(name+‘ accepted’);
pump fd := pump();
if pump fd = �1 then
-- child
while (event:= getline stdin) 6= om loop
printa ( fd, event);
if (ack := getline fd) = om then
stop;

end if;
print ;

end loop;
stop;

end if;
-- parent continues here
close( fd);
client := fg;
client.name:= name;
client.hungry:= true;

289



WEBeye Source Code A.23 vc-javent.setl

clients(pumpfd) := client;
-- send initial event if any
if current event6= om then
tell client (pump fd, current event);

end if;
end if;

end if;

if notice fd in readythen
reada (notice fd, raw event);
if is string raw eventthen
t := split (raw event);
if t(1.. n) = of interestand #t�n = n parmsthen
tell observers((+=[[[‘ ’ +x : x in t(n+1.. )]]])(2.. ));

end if;
end if;

end if;

end loop;

proc tell observers(event);
for client= clients(pumpfd) loop
if client.hungrythen
tell client (pump fd, event);

end if;
end loop;
current event:= event;

end proc tell observers;

proc tell client (pump fd, event);
printa (pump fd, event);
flush (pump fd);
if last error 6= no error then
done client (pump fd);

else
client := clients(pumpfd);
client.hungry:= false;
client.last event:= event;

290



WEBeye Source Code A.23 vc-javent.setl

clients(pumpfd) := client;
end if;

end proc tell client;

proc done client (pump fd);
msg(clients(pumpfd).name+ ‘ done’);
close(pump fd);
clients(pump fd) := om;

end proc done client;

proc quit gracefully;
exit gracefully([[[[[[‘pump for client ’ + client.name, pump fd]]] :

client= clients(pump fd)]]]);
end proc;

#include “vc--provide.setl”
#include “vc--obtain.setl”
#include “vc--getname.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

291



WEBeye Source Code A.24 vc-jmaster.cgi

A.24 vc-jmaster.cgi

Source code:

#! SETL BIN/// setl -k

-- This script should be placed in the Web server’scgi-bin directory or
-- equivalent, after SETLBIN andVC DIR are defined by configuration.

constvc dir = VC DIR; -- WEBeye home directory name

constvc link = vc dir+‘ /// vc--link.html’;
const fresh = vc dir+‘ /// vc--fresh.html’;
constbroken = vc dir+‘ /// vc--broken.html’;
const java = vc dir+‘ /// vc--java.html’;

constvc prefix = ‘CGIjjj’; -- pseudo-document convention

magic := false;

-- Try up to 10 times to read through link. The link file should
-- always exist after the first time the Box is started, except
-- very briefly during major life-cycle transitions when the Box is
-- shut down or restarted:
loop for i in f1.. 10g while (content:= getfilevc link) = om do
select(om, 50); -- wait 50 ms and try again

end loop;

if content= om then
-- WEBeye Box probably never started
put document(getfile fresh);

elseif match(content, vc prefix) = vc prefix then
-- Pseudo-document
lookup:= break (content, ‘ jjj’); -- location of lookup service
lookup fd := open(lookup, ‘socket’);
if lookup fd = om then
-- Lookup server did not accept connection

292



WEBeye Source Code A.24 vc-jmaster.cgi

put diagnosticabout(‘ lookup’);
else
html := getfile java;
for servicenamein [[[‘giver’, ‘ mouse’, ‘ evjump’, ‘ evzoom’ ]]] loop
writea (lookup fd, servicename);
reada (lookup fd, [[[servicehost, serviceport]]]);
gsub(html, to upper servicename+ ‘ PORT’, str serviceport);

end loop;
close(lookup fd);
put document(html);

end if;

else
-- Link points to a (static) real document
put document(content);

end if;

proc put mime headers;
print (‘Content--type: text/// html’);
print ;

end proc;

proc put document(content);
put mime headers;
putchar (content);

end proc;

proc put diagnosticabout(servicename);
var content:= getfilebroken;
gsub(content, ‘SERVICE’, servicename);
put document(content);

end proc;

293



WEBeye Source Code A.25 vc-jumper.setl

A.25 vc-jumper.setl

Service provided:
jumper

Client of service:
do (vc-do.setl, Section A.11)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-simpler.setl (Section A.40)

Source code:

constyhwh= ‘vc--jumper.setl’;

-- Simplified “Jump To” command interface.

-- The client just sends a pair of numbers (pan and tilt) on each line.

-- The name of the service we provide:
#defineservicename‘ jumper’

-- The number of parameters on the command:
#definen parms 2

-- The full details of the command we will send to thedo service:
#definebuild cmd \\\
cmd:= fg; \\\
cmd.name:= ‘Jump’; \\\
cmd.subcmd:= ‘To’; \\\
cmd.pan:= val t(1); \\\
cmd.tilt := val t(2);

#include ”vc-simpler.setl”

294



WEBeye Source Code A.26 vc-master.cgi

A.26 vc-master.cgi

Source code:

#! SETL BIN/// setl -k

-- This script should be placed in the Web server’scgi-bin directory or
-- equivalent, after SETLBIN andVC DIR are defined by configuration.

constvc dir = VC DIR; -- WEBeye home directory name

constvc link = vc dir+‘ /// vc--link.html’;
const fresh = vc dir+‘ /// vc--fresh.html’;
constbroken = vc dir+‘ /// vc--broken.html’;

constvc prefix = ‘CGIjjj’; -- pseudo-document convention

magic := false;

-- Try up to 10 times to read through link. The link file should
-- always exist after the first time the Box is started, except
-- very briefly during major life-cycle transitions when the Box is
-- shut down or restarted:
loop for i in f1.. 10g while (content:= getfilevc link) = om do
select(om, 50); -- wait 50 ms and try again

end loop;

if content= om then
-- WEBeye Box probably never started
put document(getfile fresh);

elseif match(content, vc prefix) = vc prefix then
-- Pseudo-document
lookup:= break (content, ‘ jjj’); -- location of lookup service
lookup fd := open(lookup, ‘socket’);
if lookup fd = om then
-- Lookup server did not accept connection
put diagnosticabout(‘ lookup’);

295



WEBeye Source Code A.26 vc-master.cgi

else
writea (lookup fd, ‘httpd’);
reada (lookup fd, [[[httpd host, httpd port]]]);
close(lookup fd);
httpd := httpd host+ ‘ :’ + str httpd port;
httpd fd := open(httpd, ‘socket’);
if httpd fd = om then
-- WEBeye httpd server did not accept connection
put diagnosticabout(‘httpd’);

else
-- Construct HTTP request and send to WEBeye httpd
query:= getenv‘PATH INFO’ + ‘?’ + getenv‘QUERY STRING’;
printa (httpd fd, ‘GET’, query, ‘HTTP/// 1.0’);
printa (httpd fd);
if ‘HTTP/// 1.0 200 OK’ in (getlinehttpd fd ? ‘’) then
-- Success - serve document returned by WEBeye httpd
putchar (getfile httpd fd);

else
-- WEBeye httpd up but not responding properly
put diagnosticabout(‘httpd’);

end if;
close(httpd fd);

end if;
end if;

else
-- Link points to a (static) real document
put document(content);

end if;

proc put mime headers;
print (‘Content--type: text/// html’);
print ;

end proc;

proc put document(content);
put mime headers;
putchar (content);

296



WEBeye Source Code A.26 vc-master.cgi

end proc;

proc put diagnosticabout(servicename);
var content:= getfilebroken;
gsub(content, ‘SERVICE’, servicename);
put document(content);

end proc;

297



WEBeye Source Code A.27 vc-model.setl

A.27 vc-model.setl

Called by parent program:
vc-do.setl (Section A.11)

Calls child program:
vc-seq.setl (Section A.39)

Textually #includes:
vc-decode.setl (Section A.10)
vc-exit.setl (Section A.15)
vc-msg.setl (Section A.30)

Source code:

constyhwh= ‘vc--model.setl’;

-- This is the main pump used by thedo server, and maintains a
-- high-level model of the pan///tilt/// zoom system.
--
-- It takes requests already checked and encapsulated as SETL maps,
-- performs them, and replies with similarly encapsulated responses.
--
-- It processes requests sequentially, but internally uses a “sequencer”
-- program,vc-seq.setl, to take advantage of the possibility
-- of overlapped command-and-response (full duplex) communications with
-- the Canon VC-C3 to implement speed-ramped motion trajectories in
-- which pan///tilting and zooming are performed simultaneously.

-- Command sequencer:
constseq fd = fileno open(‘exec setl vc--seq.setl’, ‘ pump’);

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals

var cur mode:= ‘RC’; -- by assumption, butinit modelchanges it

var cur zoomfactor := 1;
var cur zoomspeed:= 0;
var currently zooming:= false;

var cur pan:= 0, cur tilt := 0;

298



WEBeye Source Code A.27 vc-model.setl

var cur pan speed:= 0, cur tilt speed:= 0;
var currently moving:= false;

var ms per tick := 100;
constmin movespeed= 1;
constmax movespeed= 70;
constmax speed= max movespeed� ms per tick = 1000; -- deg/// tick
constmax zoomspeed= 8; -- the “min” is the -ve, and zooms out

constmax pan speed= 76; -- the “min” is the -ve, and pans left
constmax tilt speed= 70; -- the “min” is the -ve, and tilts down

constmin zoom= 1;
constmax zoom= 10;

var cur ramp:= 500; -- ms
var ramp ticks:= ms to ticks cur ramp;
var accel:= max speed= (1 max ramp ticks); -- speed change per tick

tie (stdin, stdout);

init model;

loop doing
[[[ready]]] := select([[[fsigtermfd, stding]]]);
if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;
read (cmd);

while not eof do
write (perform(cmd)); -- performcmdand give client the response

end loop;

proc init model;
do init;
do modehost;
do zoomstop;

299



WEBeye Source Code A.27 vc-model.setl

do movestop;
do zoomspeed(5); -- a medium-high default speed for zooms

end proc;

proc perform(cmd);
r := do response([[[ ]]]); -- default
casecmd.nameof
(‘Zoom’):
casecmd.subcmdof
(‘Start’): r := do zoomstart();
(‘Stop’): r := do zoomstop();
(‘Speed’): r := do zoomspeed(cmd.zoomspeed);
(‘To’): r := do zoomto (cmd.zoomfactor, cmd.speed);
(‘By’): r := do zoomby (cmd.zoomscale, cmd.speed);
elsemsg(‘Unrecognized Zoom subcmd ’+str cmd.subcmd);
end case;

(‘Move’):
casecmd.subcmdof
(‘Start’): r := do movestart();
(‘Stop’): r := do movestop();
(‘Speed’): r := do movespeed(cmd.panspeed, cmd.tilt speed);
(‘To’): r := do moveto (cmd.pan, cmd.tilt, cmd.ms, cmd.speed);
(‘By’): r := do moveby (cmd.pan, cmd.tilt, cmd.ms, cmd.speed);
elsemsg(‘Unrecognized Move subcmd ’+str cmd.subcmd);
end case;

(‘Jump’):
casecmd.subcmdof
(‘To’): r := do jump to (cmd.pan, cmd.tilt);
--- still to implement: ’By’
elsemsg(‘Unrecognized Jump subcmd ’+str cmd.subcmd);
end case;

(‘Ramp’):
r := do ramp(cmd.ms);

(‘Mode’):
casecmd(‘mode’) of -- i.e., ‘cmd.mode’, butmode is a keyword
(‘Host’): r := do modehost();
(‘RC’): r := do moderc();
elsemsg(‘Unrecognized mode ’+str cmd(‘mode’));

300



WEBeye Source Code A.27 vc-model.setl

end case;
(‘Clear’):
r := do clear();

(‘Reload’):
r := do reload();

(‘Setup’):
r := do setup();

(‘Reset’):
r := do reset();

(‘Check’):
r := do check();

(‘Hex’):
r := do hex(cmd.cmd);

(‘Get’):
r := do get(cmd.what);

else
msg(‘Unrecognized cmd name ’+str cmd.name);

end case;
return r;

end proc perform;

proc do zoomstart();
[[[dev dir, dev speed]]] := downcvtzoomspeed(cur zoomspeed);
if dev dir = ‘ \\\ xff’ then -- zero zoom speed) stop zooming
return do zoomstop();

end if;
if not currently zoomingthen
do cmd(unhex ‘011201’ -- device Start TELE or WIDE

+ dev dir);
currently zooming:= true;

end if;
return do response([[[‘Zoom Start’ ]]]);

end proc do zoomstart;

proc do zoomstop();
if currently zoomingthen
do cmd(unhex ‘011203’); -- device Zoom Stop
currently zooming:= false;

301



WEBeye Source Code A.27 vc-model.setl

end if;
return do response([[[‘Zoom Stop’ ]]]);

end proc do zoomstop;

proc do zoomspeed(zoomspeed);
zoomspeedmax:= �max zoomspeed;
zoomspeedmin:= max zoomspeed;
[[[dev dir, dev speed]]] := downcvtzoomspeed(zoomspeed);
if dev dir = ‘ \\\ xff’ then -- zero zoom speed) stop zooming
if currently zoomingthen
do zoomstop();

end if;
else
if currently zoomingand

dev dir 6= (downcvtzoomspeed(cur zoomspeed))(1) then
-- a “sign change” in the zoom speed
do cmd(unhex ‘011203’); -- device Zoom Stop
do cmd(unhex ‘01120402’ -- device Zoom Speed

+ char dev speed);
do cmd(unhex ‘011201’ -- device Zoom Start

+ dev dir);
else
do cmd(unhex ‘01120402’ -- device Zoom Speed

+ char dev speed);
end if;

end if;
cur zoomspeed:= zoomspeed;
return do response([[[‘Zoom Speed ’ + fixed (zoomspeed, 0, 1)]]]);

end proc do zoomspeed;

proc do zoomto (zoomfactor, at speed);
if currently zoomingthen
do zoomstop();

end if;
if at speed6= om then
do zoomspeed(at speed);

end if;
zoomfactor max:= min zoom;

302



WEBeye Source Code A.27 vc-model.setl

zoomfactor min:= max zoom;
dev factor := downcvtzoomfactor (zoomfactor);
-- 3 to 12 seconds, depending:
time limit := 1000� abs(zoomfactor� cur zoomfactor) =

(1 max abscur zoomspeed) + 3000;
do cmd(unhex ‘01120202’ -- device Zoom To

+ to two bytesdev factor, time limit);
cur zoomfactor := zoomfactor;
return do response([[[‘Zoom ’ + fixed (zoomfactor, 0, 3) +

if at speed6= om then ‘ At ’ + whole (cur zoomspeed, 0)
else‘’
end if]]]);

end proc do zoomto;

proc do zoomby (zoomscale, at speed);
return do zoomto (zoomscale� cur zoomfactor, at speed);

end proc do zoomby;

proc do movestart();
[[[dev pan dir, dev pan speed]]] := downcvtpan speed(cur pan speed);
[[[dev tilt dir, dev tilt speed]]] := downcvttilt speed(cur tilt speed);
if dev pan dir = ‘ \\\ x00’ and -- zero speeds) stop panning

dev tilt dir = ‘ \\\ x00’ then
return do movestop();

end if;
if not currently movingthen
do cmd(unhex ‘051201’ -- device Pan///Tilt Start

+ dev pan dir
+ dev tilt dir);

currently moving:= true;
end if;
return do response([[[‘Move Start’ ]]]);

end proc do movestart;

proc do movestop();
if currently movingthen
do cmd(unhex ‘051202’); -- device Pan///Tilt Stop
currently moving:= false;

303



WEBeye Source Code A.27 vc-model.setl

end if;
return do response([[[‘Move Stop’ ]]]);

end proc do movestop;

proc do movespeed(pan speed, tilt speed);
pan speedmax:= �max pan speed;
pan speedmin:= max pan speed;
tilt speedmax:= �max tilt speed;
tilt speedmin:= max tilt speed;
[[[dev pan dir, dev pan speed]]] := downcvtpan speed(pan speed);
[[[dev tilt dir, dev tilt speed]]] := downcvttilt speed(tilt speed);
if dev pan dir = ‘ \\\ x00’ and -- zero speeds) stop panning

dev tilt dir = ‘ \\\ x00’ then
if currently movingthen
do movestop();

end if;
else
[[[cur dev pan dir, �]]] := downcvtpan speed(cur pan speed);
[[[cur dev tilt dir, �]]] := downcvttilt speed(cur tilt speed);
if currently movingand
(dev pan dir 6= cur dev pan dir or
dev tilt dir 6= cur dev tilt dir) then

-- a “sign change” in the pan and///or tilt speed
do cmd(unhex ‘051202’); -- device Pan///Tilt Stop
do cmd(unhex ‘05120302’ -- device Pan///Tilt Speed

+ char dev pan speed
+ char dev tilt speed);

do cmd(unhex ‘051201’ -- device Pan/// Tilt Start
+ dev pan dir
+ dev tilt dir);

else
-- not moving, or no sign change; a simple speed change will do
do cmd(unhex ‘05120302’ -- device Pan///Tilt Speed

+ char dev pan speed
+ char dev tilt speed);

end if;
end if;
cur pan speed:= pan speed;

304



WEBeye Source Code A.27 vc-model.setl

cur tilt speed:= tilt speed;
return do response([[[‘Move Speed ’ + fixed (pan speed, 0, 1) +

‘ ’ + fixed (tilt speed, 0, 1)]]]);
end proc do movespeed;

proc do moveto (pan,tilt, ms, at speed);
assertms= om or at speed= om; -- or both
if currently movingthen
do movestop();

end if;
-- It’s no good planning trajectories to places we can’t go, so
-- clamp the request in case the caller hasn’t bothered to deal with
-- that yet, using the published limits:
panmax:= �90;
panmin:= +90;
tilt max:= �30;
tilt min:= +25;
dpan:= pan� cur pan;
dtilt := tilt � cur tilt ;
deg:= sqrt (dpan��2 + dtilt��2);
ymid := deg= 2;
-- The time axis is calledx here, often indexed by integerk
if ymid> 0 then
dircos:= dpan= deg;
dirsin := dtilt = deg;
ramp ticks:= ms to ticks cur ramp;
accel:= max speed= (1 max ramp ticks); -- speed change per tick
n := 1 max ceil ramp ticks; -- a point at the ramp end or beyond
-- Obtainxmid
if at speed6= om then
at speedmax:= min movespeed;
at speedmin:= max movespeed;
speed:= at speed� ms per tick=1000; -- deg/// sec! deg/// tick
assertspeed> 0;
assert existsk in [[[n�1,n�2.. 0]]] jjj k�accel< speed;
speedmin:= (k+1)�accel;
xmid := k + (ymid�max traj(k)) = speed;
xmid := (ceil (2 � xmid)) = 2;

305



WEBeye Source Code A.27 vc-model.setl

else
trajtime := ms? 0;
trajtimemax:= 0;
trajtimemin:= 200000; -- 200 deg at 1 deg/// sec = 200 sec
xmid := (ceil ms to ticks trajtime) = 2;
if ymid> max traj(xmid) then
-- We cannot get there fast enough; revisexmideastward
-- accordingly by settingxmid to where the max-speed
-- trajectory (seeproc max traj) reachesymidand then
-- roundingxmidup to the nearest half-tick
assert existsk in [[[n�1,n�2.. 0]]] jjjmax traj(k) < ymid;
speed:= ((k+1)�accel) min max speed;
xmid := k + (ymid�max traj(k)) = speed;
xmid := (ceil (2 � xmid)) = 2;
-- Now we can reachymid in this upwardly revised timexmid

end if;
end if;
-- xmidwas or is okay now
m := (n min ceil xmid) � 1;
assertm� 0; -- else degenerate case slipped through
-- Find the point (x = k) of departure from the max traj
assert existsk in [[[m,m�1.. 0]]] jjj traj(xmid,k,k�accel) < ymid;
-- Mid-trajectory speed is slope going from there up toxmid, ymid
speed:= (ymid�max traj(k)) = (xmid�k);
-- Trajectory function is nowmax traj (x) for x� k, and
-- traj (x, k, speed) for x� k (whenx = k, take your pick)
ramp cmds:= [[[movespeedcmd(accel�x, dircos, dirsin) :

x in [[[1.. k]]]]]];
x end:= round (2 � xmid); -- 2 � xmidalready integer in theory
cmds:= [[[[[[x�1, ramp cmds(x)]]] : x in [[[1.. k]]]]]] +

[[[[[[k, movespeedcmd(speed, dircos, dirsin)]]]]]] +
[[[[[[x end�x, ramp cmds(x)]]] : x in [[[k,k�1.. 1]]]]]] +
[[[[[[x end, movestop cmd()]]]]]];

cmds(2.. 1) := [[[[[[0, movestart cmd(speed, dircos, dirsin)]]]]]];
-- cmds = [[ticknum, cmd], ...]
time limit := 2000; -- allow 2 sec after final Stop
responses:= do cmds(cmds, ms per tick, time limit);
if #responses6= #cmdsthen

306



WEBeye Source Code A.27 vc-model.setl

msg(str #cmds+‘ commands sent but ’+str #responses+
‘ responses received’);

else
for response= responses(i) loop
[[[�,cmd]]] := cmds(i);
if not (responsesatisfiescmd) then
report (response, cmd);

end if;
end loop;

end if;
end if ymid;
-- Have the camera “settle” to its final position at a speed
-- suitable for the current zoom factor:
zorp(pan,tilt, max zoom= cur zoomfactor);
return do response([[[‘Move To ’ + fixed (pan, 0, 3) +

‘ ’ + fixed (tilt, 0, 3) +
if at speed6= om then ‘ At ’ + whole (at speed, 0)
elseifms 6= om then ‘ In ’ + whole (ms, 0)
else‘’
end if]]]);

end proc do moveto;

proc do moveby (dpan,dtilt, ms, at speed);
return do moveto (cur pan+ dpan,cur tilt + dtilt, ms, at speed);

end proc do moveby;

proc movespeedcmd(speed, dircos, dirsin);
deg per sec:= speed� 1000=ms per tick;
[[[�, dev pan speed]]] := downcvtpan speed(deg per sec� dircos);
[[[�, dev tilt speed]]] := downcvttilt speed(deg per sec� dirsin);
return unhex ‘05120302’ -- device Pan/// Tilt Speed

+ char dev pan speed
+ char dev tilt speed;

end proc;

proc movestart cmd(speed, dircos, dirsin);
deg per sec:= speed� 1000=ms per tick;
[[[dev pan dir, �]]] := downcvtpan speed(deg per sec� dircos);

307



WEBeye Source Code A.27 vc-model.setl

[[[dev tilt dir, �]]] := downcvttilt speed(deg per sec� dirsin);
return unhex ‘051201’ -- device Pan///Tilt Start

+ dev pan dir
+ dev tilt dir;

end proc;

proc movestop cmd();
return unhex ‘051202’; -- device Pan///Tilt Stop

end proc;

proc do jump to (pan,tilt );
zorp(pan,tilt, max movespeed);
return do response([[[‘Move To ’ + fixed (pan, 0, 3) +

‘ ’ + fixed (tilt, 0, 3)]]]);
end proc do jump to;

-- Utility for do moveto, do jump to
do movestatus(); -- reloadcur pan,cur tilt from hardware
dpan:= pan� cur pan;
dtilt := tilt � cur tilt ;
deg:= sqrt (dpan��2 + dtilt��2);
if deg> 0 then
dircos:= dpan= deg;
dirsin := dtilt = deg;
-- Base the time limit on the reasonable assumption of greater error
-- over longer trajectories:
do movespeed(settlespeed� dircos, settlespeed� dirsin);
settle time:= 1000+ 200� deg= settlespeed;
dev pan:= downcvtpan(pan);
dev tilt := downcvttilt (tilt );
do cmd(unhex ‘05120502’ -- device Pan///Tilt To

+ to two bytesdev pan
+ to two bytesdev tilt, settle time);

cur pan:= pan;
cur tilt := tilt ;

end if;
end proc zorp;

308



WEBeye Source Code A.27 vc-model.setl

proc do ramp(ms);
msmax:= 0;
msmin:= 15000; -- even a 15-second ramp is pretty incredibly slow
cur ramp:= ms;
return do response([[[‘Ramp ’ + str ms]]]);

end proc do ramp;

proc do modehost();
do clear; -- toggle RTS
do cmd(unhex ‘08170100’); -- device Mode Select PC
cur mode:= ‘Host’;
-- N.B. do setupauto-detects home and re-reads pan///tilt/// zoom info:
return do response([[[‘Mode Host’ ]]] + do setup().notices);

end proc do modehost;

proc do moderc();
do clear; -- toggle RTS
do cmd(unhex ‘08170101’); -- device Mode Select Remote Controller
cur mode:= ‘RC’;
return do response([[[‘Mode RC’ ]]]);

end proc do moderc;

proc do init();
-- Condition the serial line
do cmd(‘ i’); -- “initialize”
return do response([[[ ]]]);

end proc do init;

proc do clear();
-- Lower the RTS line for 100 ms, then raise it
do cmd(‘c’); -- “clear”
return do response([[[ ]]]);

end proc do clear;

proc do reload();
--
-- Note that the model’s impression of whether the platform is
-- currently pantilting or zooming is not updated by this reload,

309



WEBeye Source Code A.27 vc-model.setl

-- since I don’t know how to read those bits from the hardware.
--
-- Moreover, since directions are bound up with the zoom and
-- pan/// tilt Start subcommands, I can’t read those either, so my
-- update of the zoom and pan and tilt speeds just assumes the
-- sign is whatever I already think it is.
--
-- Similarly I must shrug and not update the current control mode
-- (Host or RC).
--
return do response(do zoomstatus().notices+

do movestatus().notices);
end proc do reload;

proc do zoomstatus();
cmd:= unhex ‘010402’; -- device Zoom Status
response:= do cmd(cmd);
if is string responseand #response= 6 and response(2) = ‘ \\\ x84’ then
dev zoomspeed:= absresponse(4);
dev zoomfactor := from two bytesresponse(5.. 6);
[[[dev zoomdir, �]]] := downcvtzoomspeed(cur zoomspeed);
cur zoomspeed:= upcvt zoomspeed(dev zoomdir, dev zoomspeed);
cur zoomfactor := upcvt zoomfactor (dev zoomfactor);
return do response([[[‘Zoom Speed ’ + fixed (cur zoomspeed, 0, 1),

‘Zoom ’ + fixed (cur zoomfactor, 0, 3)]]]);
end if;
msg(‘Unexpected response ’ + str decoderesponse+

‘ to Zoom Status command ’ + str decodecmd);
return do reset if negativeresponse(response);

end proc do zoomstatus;

proc do movestatus();
cmd:= unhex ‘050402’; -- device Pan/// Tilt Status
response:= do cmd(cmd);
if is string responseand #response= 9 and response(2) = ‘ \\\ x84’ then
dev pan speed:= absresponse(4);
dev tilt speed:= absresponse(7);
dev pan := from two bytesresponse(5.. 6);

310



WEBeye Source Code A.27 vc-model.setl

dev tilt := from two bytesresponse(8.. 9);
[[[dev pan dir, �]]] := downcvtpan speed(cur pan speed);
cur pan speed:= upcvt pan speed(dev pan dir, dev pan speed);
[[[dev tilt dir, �]]] := downcvttilt speed(cur tilt speed);
cur tilt speed:= upcvt tilt speed(dev tilt dir, dev tilt speed);
cur pan := upcvt pan(dev pan);
cur tilt := upcvt tilt (dev tilt );
return do response([[[‘Move Speed ’ + fixed (cur pan speed, 0, 1) +

‘ ’ + fixed (cur tilt speed, 0, 1),
‘Move To ’ + fixed (cur pan, 0, 3) +

‘ ’ + fixed (cur tilt, 0, 3)]]]);
end if;
msg(‘Unexpected response ’ + str decoderesponse+

‘ to Pan/// Tilt Status command ’ + str decodecmd);
return do reset if negativeresponse(response);

end proc do movestatus;

proc do reset if negativeresponse( frame);
-- This is a hack, obviously. It turns out that when the Canon
-- starts responding to Status requests with “negative response”,
-- it will continue to do so. Whether this is dB’s fault or a glitch
-- in the Canon firmware remains unknown. Fortunately, it happens
-- rarely, much less than once per day in the early months of testing.
-- Whatever the etiology, a remedy that works is to pull out the
-- hammer and do a Reset whenever this condition is detected.
if #frame� 2 and
(abs frame(1) bit and 16#80) = 0 and
(abs frame(2) bit and 16#60) = 16#40then
return do reset();

else
return do response([[[ ]]]);

end if;
end proc;

proc do setup();
cmd:= unhex ‘0510’; -- device Pan///Tilt Setup
response:= do cmd(cmd, 5000); -- 5 sec time limit
if is string responseand #response= 6 and response(2) = ‘ \\\ x90’ then

311



WEBeye Source Code A.27 vc-model.setl

pass; -- response(3.. 6) has the absolute position, but
-- do reloadwill pick that up in a moment anyway

else
msg(‘Unexpected response ’ + str decoderesponse+

‘ to Pan/// Tilt Setup command ’ + str decodecmd);
end if;
return do reload(); -- refresh model state from hardware state

end proc do setup;

proc do reset();
do init;
do cmd(‘a’, 6000); -- provoke VC-C3 auto-init, 6 sec time limit
return do modehost();

end proc do reset;

proc do check();
zoomfactor := cur zoomfactor;
[[[pan,tilt ]]] := [[[cur pan,cur tilt ]]];
do reload();
--- move these fuzz constants out to a more respectable place:
if abs (cur pan� pan) > 0.25or

abs(cur tilt � tilt ) > 0.25or
--- It’s a fiction that this is a zoom “factor”.
--- It almost certainly is just the position of the servo
--- controlling the zoom ring:
abs(cur zoomfactor� zoomfactor) > 0.05then
return do reset();

end if;
return do response([[[ ]]]);

end proc do check;

proc do hex(cmd); -- unadvertised, for low-level experimentation
response:= do cmd(unhex cmd, 20000); -- 20-second time limit (wow)
return do response([[[‘Frame ’ + str decoderesponse]]]);

end proc do hex;

proc do get(what);
r := do response([[[ ]]]);

312



WEBeye Source Code A.27 vc-model.setl

r.value:= casewhatof
(‘mode’): cur mode,
(‘zoom factor’): cur zoomfactor,
(‘zooming’): currently zooming,
(‘zoom speed’): cur zoomspeed,
(‘position’): [[[cur pan,cur tilt ]]],
(‘moving’): currently moving,
(‘move speed’): [[[cur pan speed, cur tilt speed]]],
(‘ ramp’): cur ramp
elsemsg(‘Unrecognized Get argument ’+str what)
end case;
return r;

end proc do get;

-- The model replies to the client with a record including ‘notices’:
proc do response(notices);
r := fg;
r.notices:= notices;
return r;

end proc;

proc do cmd(cmd, time limit(�)); -- do command and get lo-lev response
seq:= fg;
seq.cmd:= cmd;
-- 3-second response timeout default:
seq.timelimit := time limit(1) ? 3000;
return do step(seq);

end proc;

proc do cmds(cmds, tick ms, time limit(�)); -- many cmds, responses
seq:= fg;
seq.cmds:= cmds;
seq.tickms:= tick ms;
-- 4.5-second response timeout default:
seq.timelimit := time limit(1) ? 4500;
return do step(seq);

end proc;

313



WEBeye Source Code A.27 vc-model.setl

proc do step(seq); -- send a command-sequence packet and get response
writea (seq fd, seq);
reada (seq fd, response);
if eof then
msg(yhwh+ ‘ got EOF from sequencer -- quitting’);
quit gracefully;

end if;
return response;

end proc;

op satisfies(response, cmd);
assert is string cmd;
if response= cmdthen return true ; end if;
if not is string responsethen return false; end if;
if #response� 2 and #cmd� 2 and

response(1) + char (absresponse(2) bit and 16#3f#) +
response(3.. #responsemin #cmd) = cmdthen
return true ;

end if;
return false;

end op;

proc report (response, cmd);
if not is string responsethen
msg(‘Non--string response ’+str response+

‘ to command ’+str decodecmd);
else
msg(‘Unexpected response ’+str decoderesponse+

‘ to command ’+str decodecmd);
end if;

end proc;

-- General note about speed conversions: “down” conversions always
-- yield a sign as a single character suitable for plugging into a
-- device-level command, and a magnitude that is a positive integer
-- in the range 0.. 65535 suitable for passing totwo bytes.

314



WEBeye Source Code A.27 vc-model.setl

-- Zoom rate conversions:
--
-- The zoom hardware requires a direction and a 3-bit magnitude.
--
-- But since that does not provide for a zero, I will use as
-- the “direction” a value of ‘\\\ xff’ rather than one of the valid
-- values ‘\\\ x00’ (TELE) or ‘ \\\ x01’ (WIDE) if I think the zoom speed
-- you supply is about 0.
--
-- I don’t yet know the relationship between the 8 available speeds
-- in each direction and the actual change in zoom factor per second,
-- so for now the mapping is just this:
--
-- I take yourzoomspeedspec and map it to the nearest integern
-- in �8.. 8. If n is 0, you getdev zoomdir = ‘ \\\ xff’ (and
-- dev zoomspeedis om), but otherwise you get
-- dev zoomdir = ‘ \\\ x00’ for positive and ‘\\\ x01’ for negative,
-- anddev zoomspeedwill be one less than the magnitude ofn.
--
-- Going the other way, I take one of those three direction indicators
-- together with a speed in the range 0.. 7, and map the pair to
-- �8.. �8 (8 is symbolized asmax zoomspeedin the code).

proc downcvtzoomspeed(zoomspeed);
n := round zoomspeedmax�max zoomspeedmin max zoomspeed;
case signn of
(�1): return [[[‘ \\\ x01’, �n�1]]]; -- i.e.,absn� 1
(0): return [[[‘ \\\ xff’, om]]];
(1): return [[[‘ \\\ x00’, n�1]]];
end case;

end proc;

proc upcvt zoomspeed(dev zoomdir, dev zoomspeed);
casedev zoomdir of
(‘ \\\ x01’): return �dev zoomspeed� 1;
(‘ \\\ xff’): return 0;

315



WEBeye Source Code A.27 vc-model.setl

(‘ \\\ x00’): return dev zoomspeed+ 1;
end case;

end proc;

-- Zoom factor conversions:
--
-- Until I know the relationship between zoom ring position
-- and zoom factor, I will just scale linearly; I might try
-- logarithmically later if it looks like it might work out
-- better.

#definezoomlo min zoom
#definezoomhi max zoom
#definedev zoomlo 0
#definedev zoomhi 16#469#

proc downcvtzoomfactor (zoomfactor);
u := ((zoomfactor� zoomlo) =

(zoomhi � zoomlo)) max 0 min 1;
-- Rounding is not quite “fair” here but I like it anyway
return round (u � (dev zoomhi � dev zoomlo) + dev zoomlo);

end proc;

proc upcvt zoomfactor (dev zoomfactor);
u := ((dev zoomfactor� dev zoomlo) =

(dev zoomhi � dev zoomlo)) max 0 min 1;
return u � (zoomhi � zoomlo) + zoomlo;

end proc;

-- Pan/Tilt rate conversions:
--
-- The device units, degrees per second, seem ideal. “Down”
-- conversions map your signedpan speedor tilt speedto a
-- [sign, magnitude] pair. The magnitude is suitable for a device
-- Pan/// Tilt Speed command, and the sign for Pan///Tilt Start.
--
-- The speed range is�76 to 76 degrees per second for pan, and
-- �70 to 70 for tilt, with positive meaning rightgoing or upgoing

316



WEBeye Source Code A.27 vc-model.setl

-- respectively.
--
-- “Up” conversions are the obvious inverse of down, without the
-- range check or rounding.

proc downcvtpan speed(pan speed);
n := round pan speedmax�max pan speedmin max pan speed;
case signn of
(�1): return [[[‘ \\\ x02’, �n]]]; -- i.e.,absn
(0): return [[[‘ \\\ x00’, 1]]];
(1): return [[[‘ \\\ x01’, n]]];
end case;

end proc;

proc upcvt pan speed(dev pan dir, dev pan speed);
casedev pan dir of
(‘ \\\ x02’): return �dev pan speed;
(‘ \\\ x00’): return 0;
(‘ \\\ x01’): return dev pan speed;
end case;

end proc;

proc downcvttilt speed(tilt speed);
n := round tilt speedmax�max tilt speedmin max tilt speed;
case signn of
(�1): return [[[‘ \\\ x02’, �n]]]; -- i.e.,absn
(0): return [[[‘ \\\ x00’, 1]]];
(1): return [[[‘ \\\ x01’, n]]];
end case;

end proc;

proc upcvt tilt speed(dev tilt dir, dev tilt speed);
casedev tilt dir of
(‘ \\\ x02’): return �dev tilt speed;
(‘ \\\ x00’): return 0;
(‘ \\\ x01’): return dev tilt speed;
end case;

end proc;

317



WEBeye Source Code A.27 vc-model.setl

-- Pan/Tilt conversions:
--
-- The natural units are degrees. The Canon takes units of 0.115 deg
-- in both pan and tilt. Hex 8000 is the midpoint (home), and you can
-- go from hex –30E to 30E in pan, –10A to 0D9 in tilt, representing
-- about –90 to 90 deg in pan, –30 to 25 deg in tilt.
--
-- The device convention for pan is “backwards”.

proc downcvtpan(pan);
return 16#8000+ round ((�pan= 0.115) max�16#30Emin 16#30E);

end proc;

proc upcvt pan(dev pan);
return (16#8000� dev pan) � 0.115;

end proc;

proc downcvttilt (tilt );
return 16#8000+ round ((tilt = 0.115) max�16#10Amin 16#0D9);

end proc;

proc upcvt tilt (dev tilt );
return (dev tilt � 16#8000) � 0.115;

end proc;

-- Trajectory functions

proc max traj (x); -- value of ramp or itsmax speedextension atx
assertx� 0;
n := 1 max ceil ramp ticks; -- a point at the ramp end or beyond
k := ceil x;
if k < n then
return accel�k�(x�(k�1)=2); -- if x=k, this isaccel�k�(k+1)=2

else
-- k�n meansx is beyond what the ramp covers. Follow the ramp
-- to n�1 and then travel atmax speedthe rest of the way tox:

318



WEBeye Source Code A.27 vc-model.setl

return traj (x, n�1, max speed);
end if;

end proc max traj;

proc traj (x, k, speed); -- follow ramp tok, then go maxly tox
assert is integer k;
assertk� 0;
assertx� k; -- I don’t need this, but else what a strange caller!
return max traj (k) + speed�(x�k);

end proc;

op ms to ticks (ms); -- for example,k andx above are in ticks
return ms= ms per tick;

end op;

-- Endianness-independent packer and unpacker of two-byte spam

op to two bytes(i);
return char (i div 256) + char (i mod 256);

end op;

op from two bytes(s);
return abs s(1) � 256+ abss(2);

end op;

proc quit gracefully;
exit gracefully([[[[[[str filenameseq fd, seq fd]]]]]]);

end proc;

#include “vc--decode.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

319



WEBeye Source Code A.28 vc-mouse.setl

A.28 vc-mouse.setl

Service provided:
mouse

Client of service:
do (vc-do.setl, Section A.11)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-obtain.setl (Section A.31)
vc-provide.setl (Section A.32)

Source code:

constyhwh= ‘vc--mouse.setl’;

-- This strange little service is for Java clients that take an
-- unusual view of mouse gestures by doing some local timing and
-- interpretation that result in mouse “events” we agree to call
-- ‘click’, ‘linger’, ‘jump’, ‘zoom’, and ‘stop’. These are mapped
-- here to combinations of moving, “jumping” (which is just moving
-- without the usual sigmoid speed ramping of the motion trajectory),
-- and zooming (seevc-do.setl).

constwidth= 320;
constheight= 240;
constpanlo= �90;
constpanhi= 90;
consttiltlo = �30;
consttilthi = 25;

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals
constserver fd = fileno provide service(‘mouse’);

var clients:= fg;
var do fd := om;

320



WEBeye Source Code A.28 vc-mouse.setl

loop

[[[ready]]] := select([[[fsigtermfd, server fdg + domain clients]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

for client= clients(pumpfd) jjj pump fd in readyloop
done client (pump fd);

end loop;

if server fd in readythen
fd := accept(server fd);
if fd 6= om then
name:= getnamefd;
msg(name+‘ accepted’);
pump fd := pump();
if pump fd = �1 then
-- child
do fd := fileno obtain service(‘do’);
loop
if (line := getline fd) 6= om and

#(t := split (line)) � 1 then
case
when t(1) = ‘click’

and #t = 3
and is num t(2)
and is num t(3) )

x := val t(2);
y := val t(3);
pan norm := (x� width=2) = (width=2);
tilt norm:= (height=2� y) = (height=2);
zoom:= do get(‘zoom factor’);
dist norm:= sqrt (pan norm��2+ tilt norm��2);
zoomscale:= 1.618�� (2� 4�dist norm);

321



WEBeye Source Code A.28 vc-mouse.setl

dpan:= pan norm� 40= zoom;
dtilt := tilt norm� 30= zoom;
if zoomscale� 1 then
do zoomby (zoomscale);
do moveby (dpan,dtilt);

else
do moveby (dpan,dtilt);
do zoomby (zoomscale);

end if;
printa ( fd); -- reply with empty line

when t(1) = ‘ linger’
and #t = 3
and is num t(2)
and is num t(3) )

x := val t(2);
y := val t(3);
pan norm := (x� width=2) = (width=2);
tilt norm:= (height=2� y) = (height=2);
zoom:= do get(‘zoom factor’);
pan rate := signpan norm � pan norm��2 � 60= zoom;
tilt rate := sign tilt norm� tilt norm��2 � 60= zoom;
do movespeed(pan rate, tilt rate);
do movestart;
printa ( fd); -- reply with empty line

when t(1) = ‘ jump’
and #t = 3
and is num t(2)
and is num t(3) )

-- this command uses the “natural” units
pan := val t(2);
tilt := val t(3);
do jump to (pan,tilt );
printa ( fd); -- reply with empty line

when t(1) = ‘zoom’
and #t = 2
and is num t(2) )

zoom:= val t(2);
do zoomto (zoommax 1 min 10);

322



WEBeye Source Code A.28 vc-mouse.setl

printa ( fd); -- reply with empty line
when t(1) = ‘stop’

and #t = 1 )
do movestop;
printa ( fd); -- reply with empty line

otherwise )
stop;

end case;
else
stop;

end if;
end loop;
assert false;

end if;
-- parent continues here
close( fd);
client := fg;
client.name:= name;
clients(pumpfd) := client;

end if;
end if;

end loop;

proc new cmd(name);
cmd:= fg;
cmd.name:= name;
return cmd;

end proc;

proc do cmd(cmd);
writea (do fd, cmd);
geta(do fd, responseline);
return responseline; --- currently with no check

end proc;

proc do jump to (pan,tilt );
do jump(‘To’, pan,tilt );

323



WEBeye Source Code A.28 vc-mouse.setl

end proc;

proc do jump by(pan,tilt );
do jump(‘By’, pan,tilt );

end proc;

proc do jump(toby, pan,tilt );
cmd:= new cmd(‘Jump’);
cmd.subcmd:= toby;
cmd.pan:= pan;
cmd.tilt := tilt ;
do cmd(cmd);

end proc;

proc do moveto (pan,tilt );
do move(‘To’, pan,tilt );

end proc;

proc do moveby (pan,tilt );
do move(‘By’, pan,tilt );

end proc;

proc do move(toby, pan,tilt );
cmd:= new cmd(‘Move’);
cmd.subcmd:= toby;
cmd.pan:= pan;
cmd.tilt := tilt ;
do cmd(cmd);

end proc;

proc do movestart;
cmd:= new cmd(‘Move’);
cmd.subcmd:= ‘Start’;
do cmd(cmd);

end proc;

proc do movestop;
cmd:= new cmd(‘Move’);

324



WEBeye Source Code A.28 vc-mouse.setl

cmd.subcmd:= ‘Stop’;
do cmd(cmd);

end proc;

proc do movespeed(pan speed, tilt speed);
cmd:= new cmd(‘Move’);
cmd.subcmd:= ‘Speed’;
cmd.panspeed:= pan speed;
cmd.tilt speed:= tilt speed;
do cmd(cmd);

end proc;

proc do zoomto ( factor);
cmd:= new cmd(‘Zoom’);
cmd.subcmd:= ‘To’;
cmd.zoomfactor := factor;
do cmd(cmd);

end proc;

proc do zoomby (scale);
cmd:= new cmd(‘Zoom’);
cmd.subcmd:= ‘By’;
cmd.zoomscale:= scale;
do cmd(cmd);

end proc;

proc do get(what);
cmd:= new cmd(‘Get’);
cmd.what:= what;
return unstr do cmd(cmd);

end proc;

op is num (a);
return a(‘ˆ [+--]?[0--9]+(\\\\\\ .[0--9]+)?$’) 6= om;

end op;

proc done client (pump fd);
msg(clients(pumpfd).name+ ‘ done’);

325



WEBeye Source Code A.28 vc-mouse.setl

close(pump fd);
clients(pump fd) := om;

end proc done client;

proc quit gracefully;
exit gracefully([[[[[[‘pump for client ’ + client.name, pump fd]]] :

client= clients(pump fd)]]]);
end proc;

#include “vc--provide.setl”
#include “vc--obtain.setl”
#include “vc--getname.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

326



WEBeye Source Code A.29 vc-mover.setl

A.29 vc-mover.setl

Service provided:
mover

Client of service:
do (vc-do.setl, Section A.11)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-simpler.setl (Section A.40)

Source code:

constyhwh= ‘vc--mover.setl’;

-- Simplified “Move To” command interface.

-- The client just sends a pair of numbers (pan and tilt) on each line.

-- The name of the service we provide:
#defineservicename‘mover’

-- The number of parameters on the command:
#definen parms 2

-- The full details of the command we will send to thedo service:
#definebuild cmd \\\
cmd:= fg; \\\
cmd.name:= ‘Move’; \\\
cmd.subcmd:= ‘To’; \\\
cmd.pan:= val t(1); \\\
cmd.tilt := val t(2);

#include ”vc-simpler.setl”

327



WEBeye Source Code A.30 vc-msg.setl

A.30 vc-msg.setl

Textually #included by:
vc-camera.setl (Section A.4)
vc-do.setl (Section A.11)
vc-event.setl (Section A.12)
vc-giver.setl (Section A.17)
vc-httpd.setl (Section A.19)
vc-image.setl (Section A.20)
vc-input.setl (Section A.22)
vc-javent.setl (Section A.23)
vc-model.setl (Section A.27)
vc-mouse.setl (Section A.28)
vc-ptz.setl (Section A.33)
vc-push.setl (Section A.34)
vc-recv.setl (Section A.36)
vc-send.setl (Section A.38)
vc-seq.setl (Section A.39)
vc-simpler.setl (Section A.40)
vc-snap.setl (Section A.41)

Source code:

-- If the program which#includes this file is a server started by
-- vc-toplev.setl (or a subprocess thereof), and identifies itself in
-- the stringyhwh, then this routine spews a message that will end
-- up in the log file, becausevc-toplev.setl captures all output sent
-- to stderr by its subprocesses and feeds that output through to the
-- spewroutine ofvc-admin.setl, prefixed by a timestamp andyhwh.

proc msg(s);
printa (stderr, yhwh, ‘ :’, s);

end proc;

328



WEBeye Source Code A.31 vc-obtain.setl

A.31 vc-obtain.setl

Textually #included by:
vc-do.setl (Section A.11)
vc-giver.setl (Section A.17)
vc-httpd.setl (Section A.19)
vc-javent.setl (Section A.23)
vc-mouse.setl (Section A.28)
vc-ptz.setl (Section A.33)
vc-push.setl (Section A.34)
vc-seq.setl (Section A.39)
vc-simpler.setl (Section A.40)
vc-snap.setl (Section A.41)

Source code:

-- Open a TCP client port on a named service:
proc obtain service(serv name);
var serv host, serv port;
[[[serv host, serv port]]] := find service(serv name);
return open (serv host+ ‘ :’ + str serv port, ‘socket’);

end proc;

-- Find the location of a service, given its registered name:
proc find service(serv name);
var fd, serv info;
fd := fileno open(getenv‘VC LOOKUP’, ‘ socket’);
writea ( fd, serv name);
reada ( fd, serv info);
close( fd);
return serv info;

end proc;

329



WEBeye Source Code A.32 vc-provide.setl

A.32 vc-provide.setl

Textually #included by:
vc-camera.setl (Section A.4)
vc-do.setl (Section A.11)
vc-event.setl (Section A.12)
vc-giver.setl (Section A.17)
vc-httpd.setl (Section A.19)
vc-image.setl (Section A.20)
vc-javent.setl (Section A.23)
vc-mouse.setl (Section A.28)
vc-push.setl (Section A.34)
vc-simpler.setl (Section A.40)
vc-snap.setl (Section A.41)

Source code:

-- Open a TCP server port and publish its availability. The port
-- number will be chosen arbitrarily if not given inportnum:
proc provide service(serv name, portnum(�));
constsock= open(str (portnum(1) ? 0), ‘server--socket’);
if sock6= om then
-- Usehostnamein place of ‘localhost’ on a distributed system:
publish service(serv name, ‘ localhost’, port sock, pid);

end if;
-- If om for non-zeroportnum, client may wish to wait and retry:
return sock;

end proc;

-- Publish the availability of a service by registering its name and
-- location:
proc publish service(serv name, serv host, serv port, serv pid);
const fd = fileno open(getenv‘VC PUBLISH’, ‘ socket’);
writea ( fd, serv name, [[[serv host, serv port, serv pid]]]);
close( fd);
-- Redundant with the environment variable, for external parties:
putfile (‘vc--tcp/// ’+serv name, serv host+ ‘ :’ + str serv port);

end proc;

330



WEBeye Source Code A.33 vc-ptz.setl

A.33 vc-ptz.setl

Client of services:
do (vc-do.setl, Section A.11)
notice (vc-do.setl, Section A.11)

Called by parent program:
vc-camera.setl (Section A.4)

Textually #includes:
vc-decode.setl (Section A.10)
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-obtain.setl (Section A.31)

Source code:

constyhwh= ‘vc--ptz.setl’;

-- This program is instantiated as a pumping co-process child of
-- vc-camera.setl for each client that is using the high-level
-- command interface to the Canon VC-C3 pan/// tilt/// zoom (ptz) camera
-- controller.
--
-- The file descriptor of the connected client’s socket, which
-- this program inherits, is identified on the program invocation
-- command line.

constarg fd = fileno open(val command line(1), ‘socket’);
const in fd = arg fd,

out fd = arg fd; -- mnemonic references to the inherited socket

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals

constdo fd = open do server(); -- mid-level command (do) server
var notice fd := om; -- mid-level event notification service

open(‘SIGPIPE’, ‘ ignore’); -- retain control on EPIPE output errors

p (‘Welcome to the Canon VC--C3 pan/// tilt/// zoom camera control server.’);

331



WEBeye Source Code A.33 vc-ptz.setl

p (‘Type Help for help. Cavil and whine to dB (bacon@cs.nyu.edu).’);
out (‘ .’); -- “end of help” marker

prev words:= [[[‘Help’ ]]];

loop

pool := fsigterm fd, in fd, notice fdg; -- notice fd may beom
[[[ready]]] := select([[[pool]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

if in fd in readythen
if (line := getline in fd) = om then
quit gracefully;

end if;
words:= split (line);
if #words= 0 then
words:= prev words;

else
prev words:= words;

end if;
cmd:= words(1);
case of

--- This command language needs a comment convention! How about “#”?

(cmdceq ‘Help’): -- Help [command-name]
-- Send lines prefixed with “>>>”, followed by a line containing
-- a single “.”
if #words= 1 then
p (‘’ );
p (‘Commands are:’);
p (‘’ );
p (‘Help [command--name]’);

332



WEBeye Source Code A.33 vc-ptz.setl

p (‘Mode fHost jjj RCg’);
p (‘Notify fOn jjj Offg’);
p (‘Zoom f[To] factor jjj By factor jjj In jjj Outg [At speed]’);
p (‘Move f[To] pan tilt jjj By pan tiltg [[In] ms jjj At speed]’);
p (‘fUp jjj Down jjj Left jjj Rightg deg [[In] ms jjj At speed]’);
--- still to document: Jump
p (‘Ramp ms’);
p (‘Show fMode jjj Notify jjj Zoom jjj Move jjj Position jjj Rampg’);
p (‘Clear’);
p (‘Reload’);
p (‘Setup’);
p (‘Reset’);
p (‘Check’);
p (‘Quit’);
p (‘’ );
p (‘A null command (empty line) repeats the previous command.’);

else
cmd name:= words(2);
case of

(cmd nameceq ‘Help’):
p (‘’ );
p (‘Help’);
q (‘Gives a compact synopsis of all commands, with optional’+
‘ words shown in brackets [ ], grouping indicated by’+
‘ braces f g, and alternatives separated by bars jjj.’);

q (‘All command names and arguments are case--insensitive,’+
‘ though for clarity they are shown here as literal names’+
‘ starting with an uppercase letter. Substitute a value’+
‘ for any (possibly hyphenated) name that begins with a’+
‘ lowercase letter. Numbers may include signs and decimal’+
‘ points.’);

q (‘Help is the only command besides Show which produces’+
‘ output back to you, the client, when asynchronous’+
‘ notification is off (see the Notify command). You can’+
‘ tell where a piece of help ends by where the ">>>" lines’+
‘ leave off and the final " ." on a line by itself occurs. ’+
‘ Server usage errors (your protocol mistakes) are also’+

333



WEBeye Source Code A.33 vc-ptz.setl

‘ reported in this "help" format. Output from Show always’+
‘ consists of a single line, as does each asynchronous’+
‘ notification (event message), so their ends are also’+
‘ easy to recognize.’);

p (‘’ );
p (‘Help command--name’);
q (‘Tells you all about a specific command.’);

(cmd nameceq ‘Notify’):
p (‘’ );
p (‘Notify On’);
q (‘Turns on asynchronous notification. You (the client)’+
‘ will get an event message, formatted as a command’+
‘ recognized by this server for convenience in playback,’+
‘ whenever there is a change in the mode, zoom, pan/// tilt,’+
‘ or ramp, and whenever a zoom or pan/// tilt limit is’+
‘ reached. ’+
‘ [Other messages, with no corresponding command but’+
‘ formatted similarly, will later be added. For now,’+
‘ there is a catch--all message "Canon" , showing things the’+
‘ hardware is saying.]’);

p (‘’ );
p (‘Notify Off’);
q (‘Turns off asynchronous notification. You can still get’+
‘ information synchronously by using the Show command.’);

(cmd nameceq ‘Zoom’):
p (‘’ );
p (‘Note on zoom speeds:’);
q (‘The Canon has 8 speeds going in (TELE) and out (WIDE),’+
‘ and accordingly the speed given in any [At speed] clauses’+
‘ on Zoom commands should be a number in the range 1 to 8. ’+
‘ Zooming in all the way from a zoom factor of 1 to a zoom’+
‘ factor of 10, or the reverse, seems to take about 2’+
‘ seconds at the maximum speed of 8, and about 9 seconds’+
‘ at the minimum speed of 1.’);

p (‘Zoom [To] factor [At speed]’);
q (‘Sets the current zoom factor to a floating--point value’+

334



WEBeye Source Code A.33 vc-ptz.setl

‘ between 1 and 10.’);
p (‘Zoom By factor [At speed]’);
q (‘Scales the current zoom factor by the specified factor.’);
p (‘Zoom In [At speed]’);
q (‘Equivalent to Zoom By 1.618.’);
p (‘Zoom Out [At speed]’);
q (‘Equivalent to Zoom By 0.618.’);

(cmd nameceq ‘Move’):
p (‘’ );
p (‘Move [To] pan tilt [[In] ms] jjj At speed]’);
q (‘Points the camera at pan degrees azimuth, tilt degrees’+
‘ elevation, and stores these as the current values.’);

q (‘Positive means right for pan, up for tilt.’);
q (‘Range is --90 to 90 for pan, --30 to 25 for tilt.’);
q (‘Resolution is 0.115 deg.’);
q (‘The angular trajectory is shaped at each end by the’+
‘ parabola suggested by the Ramp period. If the angular’+
‘ distance to move is large enough, maximum speed will be’+
‘ sustained in the interval between the acceleration and’+
‘ deceleration ramps unless constrained by the optional In’+
‘ or At specification.’);

q (‘ If " [In] ms" is specified, the server will try to plan a’+
‘ camera motion trajectory that takes ms milliseconds.’);

q (‘ If instead "At speed" is specified, the trajectory speed’+
‘ will be limited to the given maximum during the’+
‘ constant--speed interval between acceleration and’+
‘ deceleration ramps.’);

q (‘The units of speed in "At speed" are deg/// sec, with a’+
‘ resolution of 1 deg/// sec and a range of 1 to 70 deg/// sec.’);

p (‘Move By pan tilt [[In] ms] jjj At speed]’);
q (‘Adds pan degrees azimuth and tilt degrees elevation to’+
‘ the current pan and tilt values, and calls Move [To].’);

(cmd nameceq ‘Up’):
p (‘’ );
p (‘Up deg [[In] ms] jjj At speed]’);
q (‘Synonymous with "Move By 0 deg" plus In/// At options.’);

335



WEBeye Source Code A.33 vc-ptz.setl

(cmd nameceq ‘Down’):
p (‘’ );
p (‘Down deg [[In] ms] jjj At speed]’);
q (‘Synonymous with "Move By 0 --deg" plus In/// At options.’);

(cmd nameceq ‘Left’):
p (‘’ );
p (‘Left deg [[In] ms] jjj At speed]’);
q (‘Synonymous with "Move By --deg 0" plus In/// At options.’);

(cmd nameceq ‘Right’):
p (‘’ );
p (‘Right deg [[In] ms] jjj At speed]’);
q (‘Synonymous with "Move By deg 0" plus In/// At options.’);

(cmd nameceq ‘Ramp’):
p (‘’ );
p (‘Ramp ms’);
q (‘Sets the number of milliseconds the pan/// tilt apparatus’+
‘ will take to get up to maximum speed on Move [To] and’+
‘ Move By requests, and also how long it will take to slow’+
‘ down as the destination is approached.’);

q (“The default is 500 ms, which shouldn’ t jerk the platform”+
‘ very violently. Should look way smooth, too, eh.’);

(cmd nameceq ‘Show’):
p (‘’ );
p (‘All Show commands produce their output in the form of a’);
p (‘command that could later be fed back in to the server to’);
p (‘ re--establish the state reported by the Show.’);
p (‘’ );
p (‘Show Mode’);
q (‘Yields Mode Host or Mode RC.’);
p (‘Show Notify’);
q (‘Yields Notify On or Notify Off.’);
q (‘Each asynchronous notification (event message) and Show’+
‘ result is sent to you, the client, on a single,’+

336



WEBeye Source Code A.33 vc-ptz.setl

‘ newline--terminated line.’);
p (‘Show Zoom’);
q (‘Yields the current zoom factor as a Zoom [To] command.’);
p (‘Show fPosition jjj Moveg’);
q (‘Yields the current pan and tilt angles as a Move [To]’+

‘ command.’);
p (‘Show Ramp’);
q (‘Yields a Ramp command for the current ramp period.’);
p (‘’ );
p (‘See also Reload and Check.’);

(cmd nameceq ‘Mode’):
p (‘’ );
p (‘Mode Host’);
q (‘Puts the pan/// tilt and zoom apparatus into a state where’+
‘ it is receptive to commands from the computer rather’+
‘ than from the hand--held remote control.’);

q (‘ (1) Uses Clear to toggle the RTS line down and up, (2)’+
‘ requests the device mode change, and (3) calls Setup’+
‘ for auto--detection of the home position and for server’+
‘ state refreshment.’);

p (‘’ );
p (‘Mode RC’);
q (‘Zoom and Move commands from the computer (meaning you,’+
‘ the client!) will be ignored until the next switch to’+
‘ Mode Host.’);

q (‘ (1) Uses Clear to toggle the RTS line down and up, and’+
‘ (2) requests the device mode change.’);

(cmd nameceq ‘Clear’):
p (‘’ );
p (‘Clear’);
q (‘Toggles the RTS line of the RS--232 communications link’+
‘ down and up in an effort to cancel a "wait state" entered’+
‘ by the Canon VC--C3.’);

q (‘Merely wastes a little time if the hardware is not in’+
‘ such a state.’);

q (‘Called automatically by the Mode command, which is called’+

337



WEBeye Source Code A.33 vc-ptz.setl

‘ by Reset.’);

(cmd nameceq ‘Reload’):
p (‘’ );
p (‘Reload’);
q (‘Causes this server to refresh its record of the hardware’+
‘ state by reading the current zoom and pan/// tilt parameters’+
‘ from the Canon VC--C3.’);

q (‘ If asynchronous notification is on, sends you Zoom and’+
‘ Move event messages reflecting the newly read values.’);

q (‘Try this command if you think Show might be lying to’+
‘ you. See also Check.’);

q (‘Reload is called automatically by Setup, which is called’+
‘ by Mode Host, which is called by Reset in host mode.’);

q (‘Reload cannot detect the control mode (Host or RC). ’+
‘ Hence this parameter is meekly assumed to be unchanged,’+
‘ and the best you can do for definiteness is to set it’+
‘ using the Mode command.’);

(cmd nameceq ‘Setup’):
p (‘’ );
p (‘Setup’);
q (‘Causes the Canon VC--C3 hardware to auto--detect the’+
‘ pan/// tilt "home" position, and then calls Reload to’+
“ refresh the server’ s record of the hardware state.”);

q (‘Done automatically as the final stage of Mode Host,’+
‘ which is called by Reset in host mode.’);

q (‘Can take as long as 4 seconds, as the camera swings’+
‘ wildly to the home position and then back to wherever it’+
‘ was.’);

(cmd nameceq ‘Reset’):
p (‘’ );
p (‘Reset’);
q (‘Causes the Canon VC--C3 camera control unit (CCU) to’+
‘ re--initialize. The CCU will lower the CTS line of the’+
‘ RS--232 communications link for 3.8 seconds during this’+
‘ process. When CTS is later raised, the server will’+

338



WEBeye Source Code A.33 vc-ptz.setl

‘ attempt to establish the control mode that obtained’+
‘ before the Reset, by calling the Mode command.’);

(cmd nameceq ‘Check’):
p (‘’ );
p (‘Check’);
q (‘Perform a "sanity check" on the Canon VC--C3 camera’+
‘ control unit (CCU), and do a Reset if it appears to be’+
‘ malfunctioning. Sometimes, for reasons unknown, the CCU’+
‘ gets into a state where it responds normally on the’+
‘ serial line but is in fact ignoring zoom and/// or motion’+
‘ commands; Check effectively does a Show before and after’+
‘ a Reload, and looks for discrepancies. It is primarily’+
‘ intended for the use of external automata, but if you’+
‘ find the CCU not responding, you can see Check in action’+
‘ by zooming (say) to a setting far from what Show is’+
‘ reporting, doing a Check, and watching for the effects’+
‘ of a Reset (e.g., transient camera motion, image’+
‘ blanking, and, if you have Notify On, the " event" ’+
‘ messages that normally result from a Reset).’);

(cmd nameceq ‘Quit’):
p (‘’ );
p (‘Quit’);
q (‘Asks the server to drop the network connection.’);
q (‘For technical reasons, it is mildly preferable that you,’+
‘ the client, drop the network connection first, usually’+
‘ simply by closing it. The server will follow suit. ’+
‘ This avoids the compulsory 2MSL wait to retire the’+
“ half--association in the TCP module on the server’ s”+
‘ host when the server drops first. So in other words,’+
“ unless you have some good reason to, DON’ T USE Quit,”+
‘ but merely close your socket when you are done with me. ’+
‘ It is really no big deal, though.’);

else
p (‘’ );
p (‘ Invalid argument to Help command -- try Help Help.’);

339



WEBeye Source Code A.33 vc-ptz.setl

end case;

end if;
out (‘ .’); -- “end of help” marker

(cmdceq ‘Notify’): -- Notify fOn jjj Offg
if #words= 2 then
switch:= words(2);
case of
(switchceq ‘On’):
notice fd ?:= open notice server();

(switchceq ‘Off’):
if notice fd 6= om then
close(notice fd);
notice fd := om;

end if;
else
help(‘Notify argument must be On or Off -- try Help Notify’);

end case;
else
help(‘Notify command requires 1 argument -- try Help Notify’);

end if;

(cmdceq ‘Zoom’): -- ZoomfStartjjj Stopg
-- Zoom Speed zoom-speed
-- Zoomf[To] factor jjj By factor jjj In jjj Outg
-- [At speed]

case of
((#words= 2) and (words(2) ceq ‘Start’)):
do zoom(‘Start’);

((#words= 2) and (words(2) ceq ‘Stop’)):
do zoom(‘Stop’);

((#words= 3) and (words(2) ceq ‘Speed’)
and is num words(3)):

zoomspeed:= val words(3);
do zoom(‘Speed’, zoomspeed);

else
if #words� 2 then

340



WEBeye Source Code A.33 vc-ptz.setl

words(1.. 1) := [[[ ]]];
if words(1) ceq ‘To’ then
if #words� 2 and is num words(2) then
do fussyzoom(‘To’, val words(2), words(3.. ));

else
help(‘Zoom command parameter error -- try Help Zoom’);

end if;
elseif is num words(1) then
do fussyzoom(‘To’, val words(1), words(2.. ));

elseifwords(1) ceq ‘By’ then
if #words� 2 and is num words(2) then
do fussyzoom(‘By’, val words(2), words(3.. ));

else
help(‘Zoom command parameter error -- try Help Zoom’);

end if;
elseifwords(1) ceq ‘ In’ then
do fussyzoom(‘By’, 1.618,words(2.. ));

elseifwords(1) ceq ‘Out’ then
do fussyzoom(‘By’, 0.618,words(2.. ));

else
help(‘Zoom command parameter error -- try Help Zoom’);

end if;
else
help(‘Zoom command parameter error -- try Help Zoom’);

end if;
end case;

--- The Start, Stop, and Speed subcommands are deprecated and
--- de-documented, and may disappear from a future release of
--- the software:

(cmdceq ‘Move’): -- MovefStartjjj Stopg
-- Move Speed pan-speed tilt-speed
-- Movef[To] pan tilt jjj By pan tiltg
-- [[In] ms jjj At speed]

case of
((#words= 2) and (words(2) ceq ‘Start’)):
do move(‘Start’);

341



WEBeye Source Code A.33 vc-ptz.setl

((#words= 2) and (words(2) ceq ‘Stop’)):
do move(‘Stop’);

((#words= 4) and (words(2) ceq ‘Speed’)
and is num words(3)
and is num words(4)):

pan speed:= val words(3);
tilt speed:= val words(4);
do move(‘Speed’, pan speed, tilt speed);

else
if #words� 3 then
words(1.. 1) := [[[ ]]];
toby:= ‘To’;
if words(1) ceq ‘To’ then
words(1.. 1) := [[[ ]]];

elseifwords(1) ceq ‘By’ then
words(1.. 1) := [[[ ]]];
toby:= ‘By’;

end if;
if is num words(1) and

is num words(2) then
pan := val words(1);
tilt := val words(2);
do fussymove(toby, pan,tilt, words(3.. ));

else
help(‘Move command parameter error -- try Help Move’);

end if;
else
help(‘Move command parameter error -- try Help Move’);

end if;
end case;

(cmdceq ‘Speed’): -- Speed pan-speed tilt-speed
if #words= 3 and is num words(2)

and is num words(3) then
pan speed:= val words(2);
tilt speed:= val words(3);
do move(‘Speed’, pan speed, tilt speed);

else

342



WEBeye Source Code A.33 vc-ptz.setl

help(‘Speed command parameter error’);
end if;

(cmdceq ‘Up’): -- Up deg [[In] msjjj At speed]
if #words� 2 and is num words(2) then
tilt := val words(2);
do fussymove(‘By’, 0, tilt, words(3.. ));

else
help(‘Up command parameter error -- try Help Up’);

end if;

(cmdceq ‘Down’): -- Down deg [[In] msjjj At speed]
if #words� 2 and is num words(2) then
tilt := val words(2);
do fussymove(‘By’, 0, �tilt, words(3.. ));

else
help(‘Down command parameter error -- try Help Down’);

end if;

(cmdceq ‘Left’): -- Left deg [[In] msjjj At speed]
if #words� 2 and is num words(2) then
pan:= val words(2);
do fussymove(‘By’, �pan, 0,words(3.. ));

else
help(‘Left command parameter error -- try Help Left’);

end if;

(cmdceq ‘Right’): -- Right deg [[In] msjjj At speed]
if #words� 2 and is num words(2) then
pan:= val words(2);
do fussymove(‘By’, pan, 0,words(3.. ));

else
help(‘Right command parameter error -- try Help Right’);

end if;

(cmdceq ‘Jump’):
if #words= 3 and is num words(2) and

is num words(3) then

343



WEBeye Source Code A.33 vc-ptz.setl

pan:= val words(2);
tilt := val words(3);
do jump(‘To’, pan,tilt );

else
help(‘Jump command parameter error’); --- later “try Help Jump”

end if;
--- still to implement: “Jump By”

(cmdceq ‘Ramp’): -- Ramp ms
if #words= 2 and is num words(2) then
ms:= val words(2);
do ramp(ms);

else
help(‘Ramp command requires 1 numeric argument -- try Help Ramp’);

end if;

(cmdceq ‘Show’): -- ShowfModejjj Notify jjj
-- Zoomjjj
-- PositionjjjMove jjj
-- Rampg

case of
(words(2.. ) ceq [[[‘Mode’ ]]]):
which mode:= do get(‘mode’);
out (‘Mode ’ + which mode);

(words(2.. ) ceq [[[‘Notify’ ]]]):
out (‘Notify ’ + if notice fd 6= om then ‘On’ else‘Off’ end);

(words(2.. ) ceq [[[‘Zoom’ ]]]):
zoomfactor := do get(‘zoom factor’);
out (‘Zoom ’ + fixed (zoomfactor, 0, 3));

(words(2.. ) ceq [[[‘Zooming’ ]]]):
zooming:= do get(‘zooming’);
out (‘Zoom ’ + if zoomingthen ‘Start’ else‘Stop’ end);

(words(2.. ) ceq [[[‘Zoom’,‘ Speed’ ]]]):
zoomspeed:= do get(‘zoom speed’);
out (‘Zoom Speed ’ + fixed (zoomspeed, 0, 1));

(words(2.. ) ceq [[[‘Position’ ]]],
words(2.. ) ceq [[[‘Move’ ]]]):
[[[pan,tilt ]]] := do get(‘position’);

344



WEBeye Source Code A.33 vc-ptz.setl

out (‘Move To ’ + fixed (pan, 0, 3) + ‘ ’ + fixed (tilt, 0, 3));
(words(2.. ) ceq [[[‘Moving’ ]]]):
moving:= do get(‘moving’);
out (‘Move ’ + if movingthen ‘Start’ else‘Stop’ end);

(words(2.. ) ceq [[[‘Speed’ ]]],
words(2.. ) ceq [[[‘Move’,‘ Speed’ ]]]):
[[[pan speed, tilt speed]]] := do get(‘move speed’);
out (‘Move Speed ’ + fixed (pan speed, 0, 1) +

‘ ’ + fixed (tilt speed, 0, 1));
(words(2.. ) ceq [[[‘Ramp’ ]]]):
ms:= do get(‘ ramp’);
out (‘Ramp ’ + str ms);

else
help(‘Show command parameter error -- try Help Show’);

end case;

(cmdceq ‘Mode’): -- ModefHostjjj RCg
if #words= 2 then
which mode:= words(2);
case of
(which modeceq ‘Host’):
do mode(‘Host’); -- Canon under computer control

(which modeceq ‘RC’):
do mode(‘RC’); -- Canon under zapper control

else
help(‘Unrecognized mode " ’+which mode+‘ " -- try Help Mode’);

end case;
else
help(‘Mode command requires 1 argument -- try Help Mode’);

end if;

(cmdceq ‘Clear’): -- Clear
if #words= 1 then
do clear;

else
help(‘Clear command takes no arguments -- try Help Clear’);

end if;

345



WEBeye Source Code A.33 vc-ptz.setl

(cmdceq ‘Reload’): -- Reload
if #words= 1 then
do reload;

else
help(‘Reload command takes no arguments -- try Help Reload’);

end if;

(cmdceq ‘Setup’): -- Setup
if #words= 1 then
do setup;

else
help(‘Setup command takes no arguments -- try Help Setup’);

end if;

(cmdceq ‘Reset’): -- Reset
if #words= 1 then
do reset;

else
help(‘Reset command takes no arguments -- try Help Reset’);

end if;

(cmdceq ‘Check’): -- Check
if #words= 1 then
do check;

else
help(‘Check command takes no arguments -- try Help Check’);

end if;

(cmdceq ‘Hex’): -- Hex cmd
-- This command is not advertised by Help.
if #words= 2 and is hexwords(2) then
do hex(words(2));

else
help(‘Hex command requires 1 hex argument’);

end if;

(cmdceq ‘Quit’): -- Quit
if #words= 1 then

346



WEBeye Source Code A.33 vc-ptz.setl

quit gracefully;
else
help(‘Quit command takes no arguments -- try Help Quit’);

end if;
else
help(‘Unrecognized command -- try Help’);

end case;

end if in fd;

if notice fd 6= om and notice fd in readythen
reada (notice fd, notice);
if eof then
help(‘Mid--level notice service crashed -- sorry.’);
msg(‘EOF from ’+filenamenotice fd+‘ -- closing’);
close(notice fd);
notice fd := om;

else
if is string noticethen
out (‘Canon ’+notice);

else
out (‘Canon ’+str notice);

end if;
end if;

end if notice fd;

end loop;

-- Case-insensitive comparison of strings or aggregates thereof
op ceq(a, b);
return if is string a then to upper a = to upper b

else #a= #b and forall s= a(i) jjj s ceqb(i)
end if;

end op;

op is num (a);
return a(‘ˆ [+--]?[0--9]+(\\\\\\ .[0--9]+)?$’) 6= om;

end op;

347



WEBeye Source Code A.33 vc-ptz.setl

op is hex (s);
return is string s and #smod 2 = 0 and s(‘ˆ [0--9a--fA--F]���$’) = s;

end op;

proc out (s);
--
-- We take the trouble to make sure there is a ‘\\\ r’ (carriage return)
-- before each ‘\\\ n’ (newline), because that is strictly speaking how
-- line-oriented Internet programs are supposed to communicate, and if
-- the client of this program happens to betelnet running under
-- DOS///Windows, these carriage-return characters will be very welcome.
-- Conversely, they will not hurt such clients running in (say)xterms
-- under Unix.
--
-- There is no check for output errors here, because it is fair to
-- assume that if the client drops the connection, this will be seen
-- soon enough on the input side (as an EOF).
--
printa (out fd, s+‘ \\\ r’);

end proc;

proc p (s); -- spew a line of a help message
out (‘>>>’+s);

end proc;

proc q (s); -- fill and spew a point-paragraph
para := filter (‘ fmt --60’, s);
mash:= ‘ -- ’;
for line in split (para(1.. #para�1), ‘ \\\ n’) loop
p (mash+line);
mash:= ‘ ’;

end loop;
end proc;

proc help(s); -- spew a diagnostic in the form of a help message
p (s);
out (‘ .’); -- “end of help” marker

348



WEBeye Source Code A.33 vc-ptz.setl

end proc;

proc new cmd(name);
cmd:= fg;
cmd.name:= name;
return cmd;

end proc;

proc do fussyzoom(toby, zoom, words);
if #words= 2 and words(1) ceq ‘At’

and is num words(2) then
speed:= val words(2);
do zoom(toby, zoom, speed);

elseif#words= 0 then
do zoom(toby, zoom);

else
help(‘Error in [At speed] option -- try Help Zoom’);

end if;
end proc;

proc do zoom(subcmd, x(�));
cmd:= new cmd(‘Zoom’);
cmd.subcmd:= subcmd;
casesubcmdof
(‘Start’): pass;
(‘Stop’): pass;
(‘Speed’): [[[cmd.zoomspeed, � ]]] := x;
(‘To’): [[[cmd.zoomfactor, cmd.speed]]] := x;
(‘By’): [[[cmd.zoomscale, cmd.speed]]] := x;
end case;
do cmd(cmd);

end proc;

proc do fussymove(toby, pan,tilt, words);
if #words= 1 and is num words(1) or

#words= 2 and words(1) ceq ‘ In’
and is num words(2) then

ms:= val words(#words);

349



WEBeye Source Code A.33 vc-ptz.setl

do move(toby, pan,tilt, ‘ In’, ms);
elseif#words= 2 and words(1) ceq ‘At’

and is num words(2) then
speed:= val words(#words);
do move(toby, pan,tilt, ‘ At’, speed);

elseif#words= 0 then
do move(toby, pan,tilt );

else
help(‘Error in In or At option -- try Help Move’);

end if;
end proc;

proc do move(subcmd, x(�));
cmd:= new cmd(‘Move’);
cmd.subcmd:= subcmd;
casesubcmdof
(‘Start’): pass;
(‘Stop’): pass;
(‘Speed’): [[[cmd.panspeed, cmd.tilt speed]]] := x;
(‘To’,‘ By’):
[[[cmd.pan, cmd.tilt]]] := x;
if x(3) = ‘ In’ then
cmd.ms:= x(4);

elseifx(3) = ‘At’ then
cmd.speed:= x(4);

end if;
end case;
do cmd(cmd);

end proc;

proc do jump(toby, pan,tilt );
cmd:= new cmd(‘Jump’);
cmd.subcmd:= toby;
cmd.pan:= pan;
cmd.tilt := tilt ;
do cmd(cmd);

end proc;

350



WEBeye Source Code A.33 vc-ptz.setl

proc do ramp(ms);
cmd:= new cmd(‘Ramp’);
cmd.ms:= ms;
do cmd(cmd);

end proc;

proc do mode(which mode);
cmd:= new cmd(‘Mode’);
cmd(‘mode’) := which mode;
do cmd(cmd);

end proc;

proc do clear;
cmd:= new cmd(‘Clear’);
do cmd(cmd);

end proc;

proc do reload;
cmd:= new cmd(‘Reload’);
do cmd(cmd);

end proc;

proc do setup;
cmd:= new cmd(‘Setup’);
do cmd(cmd);

end proc;

proc do reset;
cmd:= new cmd(‘Reset’);
do cmd(cmd);

end proc;

proc do check;
cmd:= new cmd(‘Check’);
do cmd(cmd);

end proc;

proc do hex(devicecmd);

351



WEBeye Source Code A.33 vc-ptz.setl

cmd:= new cmd(‘Hex’);
cmd.cmd:= devicecmd;
do cmd(cmd);

end proc;

proc do get(what);
cmd:= new cmd(‘Get’);
cmd.what:= what;
value:= unstr do cmd(cmd);
return value;

end proc;

proc do cmd(cmd);
writea(do fd, cmd);
geta(do fd, responseline);
if eof then
help(‘Mid--level command service crashed -- sorry.’);
msg(‘EOF from ’+filenamedo fd+‘ -- closing’);
quit gracefully; -- we can’t do much without thedo service

end if;
return responseline;

end proc;

proc open do server();
fd := obtain service(‘do’);
if fd = om then
help(‘Mid--level command service down -- sorry.’);
msg(‘could not open " do" service’);
quit gracefully; -- we can’t do much without thedo service

end if;
return fd;

end proc;

proc open notice server();
fd := obtain service(‘notice’);
if fd = om then
help(‘Mid--level notice service down -- sorry.’);
msg(‘could not open " notice" service’);

352



WEBeye Source Code A.33 vc-ptz.setl

-- Take this to be a non-fatal error.
end if;
return fd;

end proc;

proc quit gracefully;
-- Degenerate, since we currently have no pump- or pipe-attached child
exit gracefully([[[ ]]]);

end proc;

#include “vc--obtain.setl”
#include “vc--getname.setl”
#include “vc--decode.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

353



WEBeye Source Code A.34 vc-push.setl

A.34 vc-push.setl

Service provided:
push

Client of service:
image (vc-image.setl, Section A.20)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-obtain.setl (Section A.31)
vc-provide.setl (Section A.32)
webutil.setl (Section A.44)

Source code:

constyhwh= ‘vc--push.setl’;

-- Send an infinite multi-part MIME document consisting of a stream of
-- images for the benefit of browsers that support the “server-push”
-- model of yore. (This has long been in Netscape, but never made it
-- into the Evil Empire Explorer.)

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals
constserver fd = fileno provide service(‘push’);

var clients:= fg;

loop

[[[ready]]] := select([[[fsigtermfd, server fdg + domain clients]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

354



WEBeye Source Code A.34 vc-push.setl

for client= clients(pumpfd) jjj pump fd in readyloop
done client (pump fd);

end loop;

if server fd in readythen
fd := accept(server fd);
if fd 6= om then
name:= getnamefd;
msg(name+‘ accepted’);
pump fd := pump();
if pump fd = �1 then
-- child
[[[uri, protocol,mime headers]]] := get request( fd);
mu:= massageuri uri ?fg;
mu.cmd?:= ‘JPEG’; -- someday we may dispatch on content type
image fd := obtain service(‘ image’);
if image fd = om then
printa ( fd, ‘HTTP/// 1.0 500 Sorry\\\ r’);
printa ( fd, ‘Server: WEBeye\\\ r’);
printa ( fd, ‘Content--type: text/// plain\\\ r’);
printa ( fd, ‘ \\\ r’);
printa ( fd, ‘JPEG source temporarily unavailable.\\\ r’);
printa ( fd, ‘Please try later.\\\ r’);
stop;

end if;
printa ( fd, ‘HTTP/// 1.0 200 OK’);
printa ( fd, ‘Server: WEBeye’);
printa ( fd, ‘Content--type: multipart/// x--mixed--replace;boundary=EOM’);
printa ( fd, ‘’ );
printa ( fd, ‘----EOM’);
loop doing
printa (image fd, ‘JPEG’);
reada (image fd, n);

while not eof do
image:= getn (image fd, n);
assert#image= n;
printa ( fd, ‘Content--type: image/// jpeg’);
printa ( fd, ‘Content--length: ’+str n+‘’ );

355



WEBeye Source Code A.34 vc-push.setl

printa ( fd, ‘’ );
printa ( fd, image+‘’ );
printa ( fd, ‘----EOM’);
flush ( fd);
if is integer mu.ratethen
select(om, mu.rate); -- delay formu.ratems

end if;
end loop;
stop;

end if;
-- parent continues here
close( fd); -- the child hangs onto this
client := fg;
client.pumpfd := pump fd;
client.name:= name;
clients(pumpfd) := client;

end if;
end if;

end loop;

proc done client (pump fd);
msg(clients(pumpfd).name+ ‘ done’);
close(pump fd);
clients(pump fd) := om;

end proc done client;

proc quit gracefully;
exit gracefully([[[[[[‘pump for client ’ + client.name, pump fd]]] :

client= clients(pump fd)]]]);
end proc;

#include “vc--provide.setl”
#include “vc--obtain.setl”
#include “vc--getname.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”
#include “webutil.setl”

356



WEBeye Source Code A.35 vc-quit.setl

A.35 vc-quit.setl

Called by parent program:
vc-restart.setl (Section A.37)

Textually #includes:
vc-admin.setl (Section A.1)

Source code:

constyhwh= ‘vc--quit.setl’;

-- Stop the Box

constmy lock= ‘vc--quitting’; -- lock file (mutex)
constpid dir = ‘vc--pid’;
constmain pid file = pid dir + ‘ /// vc--toplev’;
constps cmd= ‘ps alxwwj’; --- use ‘ps --edalfj’ on Solaris

commence; -- acquire mutex or exit abnormally right away

if fexists main pid file then
relieve(main pid file, true);

else
msg(‘Pid record " ’+main pid file+‘ " not found.’);
-- But that’s no reason to abandon the cleanup effort early...

end if;

-- If relieveexecuted, everything should now be cleaned out, but
-- just to make extra sure...
if fexists pid dir then
for pid file in split (filter (‘echo ’+pid dir+‘ /// ���’)) jjj

pid file notin f‘’, pid dir+‘ /// ���’g loop
relieve(pid file, false);

end loop;
else
msg(‘Directory " ’+pid dir+‘ " doesn’’ t exist???’);
msg(‘Something is seriously broken in this installation!’);
msg(‘Abending.’);
finis (1);

357



WEBeye Source Code A.35 vc-quit.setl

end if;

msg(‘Calling ’+str ps cmd+‘ ...’);
system(ps cmd);
msg(‘Done.’);

finis (0); -- release mutex and exit normally

proc relieve(pid file, complain if not found);
id := val (getfilepid file ? ‘0’);
if not is integer id or id � 0 or id � 2��31 then
msg(‘File ’+str pid file+‘ does not contain a valid process id!’);

elseif pexistsid then
msg(‘Sending TERM signal to pid ’+str id+‘ ...’);
kill (id); -- the process is supposed to propagate this signal
-- Wait up to 10 seconds for the process to go away
loop for i in f1.. 100g while pexistsid do
select(om, 100);

end loop;
-- Clear out anything in the process’s process group, in case it
-- or any of its components orphaned any children
msg(‘Sending TERM to process group ’+str id+‘ ...’);
kill (�id);
-- Give that polite signal 1414 ms to take effect
select(om, 1414);
-- Blast away any misguided limpets
msg(‘Sending KILL to process group ’+str id+‘ ...’);
kill (�id, ‘KILL’);

elseifcomplain if not foundthen
msg(‘Process id ’+str id+‘ not found.’);

end if;
end proc relieve;

#include “vc--admin.setl”

358



WEBeye Source Code A.36 vc-recv.setl

A.36 vc-recv.setl

Called by parent program:
vc-seq.setl (Section A.39)

Calls child program:
vc-input.setl (Section A.22)

Textually #includes:
vc-exit.setl (Section A.15)
vc-msg.setl (Section A.30)

Source code:

constyhwh= ‘vc--recv.setl’;

-- Low-level serial input receiver

-- This program tries to build “frames” (Canon VC-C3 messages) from
-- characters received throughvc-input. Each frame received
-- (or created as a result of error detection) is encapsulated as a
-- SETL string and written tostdout on a new line.

constvc input cmd= ‘exec setl vc--input.setl’; -- needed for xrefs
constvc input= ‘vc--input’; -- how we actually invokevc-input.setl

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals
var in fd := open input();

loop do
c := get char();
if c = om then
-- The input source keeps yieldingoms. Quit.
msg(‘cannot obtain character from ’+vc input);
quit gracefully;

end if;
length:= absc;
if 3� lengthand

length� 32 then
s := ‘’;
for i in f1.. lengthg loop

359



WEBeye Source Code A.36 vc-recv.setl

c := get char (800); -- max 800 ms between chars
if c = om then
s := ‘���’; -- meaning “inter-char timeout”
goto tell parent;

end if;
s+:= c;

end loop;
c frome s; -- remove last char ofsand put inc
if abs c 6= �(length+= [[[absa : a in s]]]) mod 256then
s := ‘+’; -- meaning “checksum error”
goto tell parent;

end if;
else
-- A bad length byte means serious trouble. Drain any input
-- that arrives soon after it, and report a checksum error.
msg(‘bad length byte (0x’+hexc+‘ ) ... draining input’);
loop for i in f1.. 32g while get char (50) 6= om do
pass; -- any char within 50 ms of its predecessor is “soon”

end loop;
s := ‘+’; -- meaning “checksum error”
goto tell parent;

end if;
tell parent:
write (s);
flush (stdout);

end loop;

-- Get a character withinmsmilliseconds, or returnom on timeout
proc get char (ms(�));
max retries:= 10;
n retries:= 0;

retry:
n retries+:= 1;
if ms(1) 6= om then
[[[ready]]] := select([[[fin fd, sigterm fdg]]], ms(1));

else
[[[ready]]] := select([[[fin fd, sigterm fdg]]]);

end if;

360



WEBeye Source Code A.36 vc-recv.setl

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;
if in fd in readythen
c := getc(in fd);
if c = om andn retries< max retriesthen
--- Do we really want to do this?
msg(vc input+‘ went down! Restarting it...’);
close(in fd);
select(om, 618); -- wait 0.618 sec before reopening
in fd := open input();
msg(vc input+‘ reopened, in fd = ’+str in fd);
goto retry;

end if;
return c;

else
return om ;

end if;
end proc;

proc open input();
in fd := open(vc input, ‘pipe--from’);
if in fd = om then
msg(‘could not open ’+vc input);
quit gracefully;

end if;
return in fd;

end proc;

proc quit gracefully;
exit gracefully([[[[[[vc input, in fd]]]]]]);

end proc;

#include “vc--exit.setl”
#include “vc--msg.setl”

361



WEBeye Source Code A.37 vc-restart.setl

A.37 vc-restart.setl

Called by parent program:
vc-cron.setl (Section A.9)

Calls child programs:
vc-go.setl (Section A.18)
vc-quit.setl (Section A.35)

Textually #includes:
vc-admin.setl (Section A.1)

Source code:

constyhwh= ‘vc--restart.setl’;

-- Restart the Box, meaning stop it if necessary, preserve the old log,
-- and start it again

constmy lock = ‘vc--restarting’; -- lock file (mutex)
constvc lock = ‘vc--lock’; -- Box’s lock file
constvc log = ‘vc--log’; -- Box’s log file
constvc num = ‘vc--number’; -- contains seq.# of last log saved
constvc go cmd = ‘exec setl vc--go.setl’;
constvc quit cmd= ‘exec setl vc--quit.setl’;

commence; -- acquire mutex or exit abnormally right away

msg(‘Calling ’+str vc quit cmd+‘ ...’);
quit rc := system(vc quit cmd);
if quit rc 6= 0 then
msg(str vc quit cmd+‘ terminated abnormally.’);
msg(‘Also abending.’);
finis (1);

end if;

if lexists vc lock then
msg(str vc quit cmd+‘ completed normally but lock file ’+vc lock+

‘ still exists!’);
msg(‘Removing ’+vc lock+‘ by force ...’);
unlink (vc lock);

362



WEBeye Source Code A.37 vc-restart.setl

end if;

if fexists vc log then
n := (val (getfilevc num? ‘0’) ? 0) + 1;
savedlog := vc log+‘ .’+str n;
msg(‘Moving ’+vc log+‘ to ’+savedlog+‘ ...’);
system(‘mv ’+vc log+‘ ’ +savedlog);
putfile (vc num, str n);

end if;

msg(‘Calling ’+str vc go cmd+‘ ...’);
system(vc go cmd);
msg(‘Done.’);

finis (0); -- release mutex and exit normally

#include “vc--admin.setl”

363



WEBeye Source Code A.38 vc-send.setl

A.38 vc-send.setl

Called by parent program:
vc-seq.setl (Section A.39)

Calls child programs:
vc-autoinit.setl (Section A.3)
vc-clear.setl (Section A.6)
vc-comdev.setl (Section A.7)
vc-init.setl (Section A.21)

Textually #includes:
vc-msg.setl (Section A.30)

Source code:

constyhwh= ‘vc--send.setl’;

-- Low-level sender

-- This program is normally invoked fromvc-send, which is
-- simply a setuid’d wrapper compiled from a C program containing
--
-- main() f
-- execl("$(SETL)", "setl", "vc-send.setl", 0);
-- g
--
-- where$(SETL) has been substituted with the absolute pathname of
-- the ‘setl’ program (the SETL driver) by the Makefile.

com dev:= command line(1) ?filter (‘exec setl vc--comdev.setl’);
com fd := fileno open(com dev, ‘w’);

tie (stdin, stdout);

loop doing
read ( frame);

while not eof do
if #frame= 1 then
caseframeof
(‘ i’): system(‘exec setl vc--init.setl’);

364



WEBeye Source Code A.38 vc-send.setl

(‘c’): system(‘exec setl vc--clear.setl’);
(‘a’): system(‘exec setl vc--autoinit.setl’);
elsemsg(‘Unrecognized special command ’ + pretty frame);
end case;
-- Some of the above operations will cause our nextputc to the
-- device (com fd) to fail horribly if we do not do this:
close(com fd);
select(om, 300); -- wait 300 ms before reopening the device
com fd := fileno open(com dev, ‘w’);

else
csum:= #frame+ 1 += [[[absc : c in frame]]];
putc (com fd, char (#frame+ 1) + frame+ char (�csummod 256));
flush (com fd);

end if;
print ;

end loop;

#include “vc--msg.setl”

365



WEBeye Source Code A.39 vc-seq.setl

A.39 vc-seq.setl

Client of service:
notify (vc-event.setl, Section A.12)

Called by parent program:
vc-model.setl (Section A.27)

Calls child programs:
vc-recv.setl (Section A.36)
vc-send.setl (Section A.38)

Textually #includes:
vc-exit.setl (Section A.15)
vc-msg.setl (Section A.30)
vc-obtain.setl (Section A.31)

Source code:

constyhwh= ‘vc--seq.setl’;

-- Low-level Canon VC-C3 command sequencer

-- This pump takes commands or sequences thereof which are
-- clocked out on attached tick-based schedules. It also remains
-- receptive at all times to event notices that are generated
-- by the Canon and mixed in with the command responses, which
-- themselves may be delayed. Advantage is taken of the fact that
-- with the Canon one doesn’t necessarily have to wait for the
-- response to one command before sending out another. So, for
-- example, we can commence a panning and zooming operation at
-- almost the same time, and it might be on the order of seconds
-- before we receive confirmation of the newly accomplished settings.
-- We send all “asynchronously” received notices to thenotify
-- service as events, as well as unexpected responses—see the calls
-- to the localnotify routine in this program.

constack time limit = 500; -- ms

-- Low-level receiver:
const in fd = fileno open(‘exec setl vc--recv.setl’, ‘ pipe--from’);

366



WEBeye Source Code A.39 vc-seq.setl

-- Interface to low-level sender,vc-send.setl:
constvc sendcmd= ‘exec setl vc--send.setl’; -- needed for xrefs
constout fd = fileno open(‘vc--send’, ‘ pump’);

constnote fd = fileno obtain service(‘notify’); -- event consumer
constsigtermfd = open(‘SIGTERM’, ‘ signal’);

open(‘SIGPIPE’, ‘ ignore’); -- but seeput frame

tie (stdin, stdout);

loop

ready:= selector exit on sigterm(fstdin, in fdg);

if in fd in readythen
-- in this state, treat anything from the controller as a note
frame:= get frame();
if frame 6= om then
notify ( frame);

end if;
end if;

if stdin in readythen
read (seq); -- command packet, a map
if eof then
quit gracefully;

end if;
time limit := round (seq.timelimit ? 1000);
if (cmd:= seq.cmd) 6= om then
response:= do cmd(cmd, time limit);
write (response);

elseif(cmds:= seq.cmds) 6= om then
responses:= do cmds(cmds, seq.tickms, time limit);
write (responses);

else
msg(‘unrecognized seq form ’ + str seq+ ‘ ignored’);

end if;

367



WEBeye Source Code A.39 vc-seq.setl

end if;

end loop;

proc get frame();
reada (in fd, frame);
if eof then
msg(‘EOF from ’ + str filename in fd);
quit gracefully;

elseif frame= ‘���’ then -- inter-char timeout
return frame;

elseif frame= ‘+’ then -- checksum error
put frame(unhex ‘8810’); -- checksum error nak
return om ;

elseif#frame< 2 then -- illegal 1-byte frame
return frame;

elseif is ack or nak framethen
return frame;

else -- note or response
ack := char (16#80bit or (abs frame(1) bit and 16#0f)) + ‘ \\\ x00’;
put frame(ack); -- ack it, whichever it is
if is note framethen
notify ( frame);
return om ;

else
return frame;

end if;
end if;

end proc get frame;

proc do cmd(cmd, time limit);
put frame(cmd);
if #cmd= 1 then
return cmd;

end if;
awaiting ack := true;
response:= om;
deadline:= clock + time limit + 1;

368



WEBeye Source Code A.39 vc-seq.setl

time left := time limit + 1;
while time left > 0 loop
ready:= selector exit on sigterm(fin fdg, time left);
if in fd in readythen

frame:= get frame();
if frame 6= om then
if #frame< 2 then -- inter-char timeout or bad frame
return frame; -- abandon command; “response” is this frame

elseif is ack or nak framethen
if awaiting ack then
if is ack framethen
if response6= om then
return response;

end if;
awaiting ack := false;

else -- abandon command; “response” is this nak frame
return frame;

end if;
else -- ack or nak unexpected
notify ( frame); -- treat as note but otherwise ignore

end if;
else -- other response
if not awaiting ack then -- already got the ack
return frame; -- take this frame to be the response

else -- didn’t get ack yet (strange but supported)
response:= frame; -- to be returned when the ack comes

end if;
end if;

end if;
end if;
time left := deadline� clock;

end loop;
return ‘ !’; -- our way of indicating this kind of timeout

end proc do cmd;

proc do cmds(cmds, tick ms, time limit);
constn = #cmds;
responses:= [[[ ]]];

369



WEBeye Source Code A.39 vc-seq.setl

timer fd := open(str tick ms, ‘real--ms’);
tick := 0;
while #cmds> 0 loop
[[[ticknum, cmd]]] fromb cmds;
while tick < ticknumloop
ready:= selector exit on sigterm(ftimer fd, in fdg);
if timer fd in readythen
geta(timer fd, dummy);
tick +:= 1;

end if;
if in fd in readythen

frame:= get frame();
if frame 6= om then
responseswith := frame;

end if;
end if;

end loop;
put frame(cmd);
ack deadline:= clock + ack time limit + 1;
ack time left := ack time limit + 1;
while ack time left > 0 loop
-- awaiting ack
ready:= selector exit on sigterm(fin fdg, ack time left);
if in fd in readythen

frame:= get frame();
if frame 6= om then
if is ack framethen
ack time left := 0; -- got ack; quit loop

else
responseswith := frame;
if is nak framethen
ack time left := 0; -- give up waiting for ack

end if;
end if;

end if;
else
responseswith := ‘@’; -- for “ack timeout”
ack time left := 0; -- give up waiting for ack

370



WEBeye Source Code A.39 vc-seq.setl

end if;
if ack time left > 0 then
ack time left := ack deadline� clock;

end if;
end loop;

end loop;
deadline:= clock + time limit + 1;
time left := time limit + 1;
-- Now enter a final stage of just waiting up to the time limit for
-- the number of responses to reach the original number of commands (n)
while #responses< n and time left > 0 loop
ready:= selector exit on sigterm(fin fdg, time left);
if in fd in readythen

frame:= get frame();
if frame 6= om then
responseswith := frame;

end if;
end if;
time left := deadline� clock;

end loop;
close(timer fd);
return responses;

end proc do cmds;

op is note ( frame);
return is string frame

and #frame� 2
and ((abs frame(1) bit and 16#80) = 0)
and ((abs frame(2) bit and 16#20) 6= 0);

end op;

op is ack or nak ( frame);
return is string frame

and #frame� 2
and (abs frame(1) bit and 16#80) 6= 0; -- “frame id” byte

end op;

op is ack ( frame);

371



WEBeye Source Code A.39 vc-seq.setl

return is ack or nak frameand abs frame(2) = 0; -- “cmd id” byte
end op;

op is nak ( frame);
return is ack or nak frameand abs frame(2) 6= 0; -- “cmd id” byte

end op;

proc notify ( frame);
writea (note fd, frame);
flush (note fd);

end proc;

proc selector exit on sigterm( fds,max time(�));
if #max time= 0 then
[[[ready]]] := select([[[fsigtermfdg + fds]]]);

else
[[[ready]]] := select([[[fsigtermfdg + fds]]], max time(1));

end if;
if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;
return ready;

end proc;

proc put frame( frame);
-- If the output operation provokes a SIGPIPE, we remain blissfully
-- unaware of it because we have explicitly requestedopen to
-- “ignore” that signal. But we can detect disappearance of the
-- sender nonetheless by checking for EOF (getlineout fd = om),
-- because normally the sender acks our requests with at least an
-- empty line:
writea (out fd, frame);
if getline out fd = om then
msg(str filenameout fd + ‘ appears to have crashed’);
quit gracefully;

end if;
end proc;

372



WEBeye Source Code A.39 vc-seq.setl

proc quit gracefully;
exit gracefully([[[[[[str filename in fd, in fd]]],

[[[str filenameout fd, out fd]]]]]]);
end proc;

#include “vc--obtain.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

373



WEBeye Source Code A.40 vc-simpler.setl

A.40 vc-simpler.setl

Textually #included by:
vc-jumper.setl (Section A.25)
vc-mover.setl (Section A.29)
vc-zoomer.setl (Section A.43)

Textually #includes:
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-obtain.setl (Section A.31)
vc-provide.setl (Section A.32)

Source code:

-- This file is meant to be#included by others, after they define:
--
-- yhwh - the name of the program that#includes this code
-- servicename - e.g., ‘mover’
-- n parms - 1 or 2
-- build cmd - statements to build cmd to send to thedo service

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals
constserver fd = fileno provide service(servicename);

var clients:= fg;

loop

[[[ready]]] := select([[[fsigtermfd, server fdg + domain clients]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

for client= clients(pumpfd) jjj pump fd in readyloop
done client (pump fd);

end loop;

374



WEBeye Source Code A.40 vc-simpler.setl

if server fd in readythen
fd := accept(server fd);
if fd 6= om then
name:= getnamefd;
msg(name+‘ accepted’);
pump fd := pump();
if pump fd = �1 then
-- child
do fd := fileno obtain service(‘do’);
loop
if (line := getline fd) 6= om and

#(t := split (line)) = n parmsand
forall parm in t jjj is num parmthen
build cmd
writea (do fd, cmd);
geta(do fd, response);
printa ( fd, response); -- normally an empty line

else
stop;

end if;
end loop;

end if;
-- parent continues here
close( fd);
client := fg;
client.name:= name;
clients(pumpfd) := client;

end if;
end if;

end loop;

op is num (a);
return a(‘ˆ [+--]?[0--9]+(\\\\\\ .[0--9]+)?$’) 6= om;

end op;

proc done client (pump fd);

375



WEBeye Source Code A.40 vc-simpler.setl

msg(clients(pumpfd).name+ ‘ done’);
close(pump fd);
clients(pump fd) := om;

end proc done client;

proc quit gracefully;
exit gracefully([[[[[[‘pump for client ’ + client.name, pump fd]]] :

client= clients(pump fd)]]]);
end proc;

#include “vc--provide.setl”
#include “vc--obtain.setl”
#include “vc--getname.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”

376



WEBeye Source Code A.41 vc-snap.setl

A.41 vc-snap.setl

Service provided:
snap

Client of service:
image (vc-image.setl, Section A.20)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-exit.setl (Section A.15)
vc-getname.setl (Section A.16)
vc-msg.setl (Section A.30)
vc-obtain.setl (Section A.31)
vc-provide.setl (Section A.32)
webutil.setl (Section A.44)

Source code:

constyhwh= ‘vc--snap.setl’;

-- This server sends a single HTTP-wrapped JPEG image, then closes.

constsigtermfd = open(‘SIGTERM’, ‘ signal’); -- catch TERM signals
constsnap fd = fileno provide service(‘snap’);

var clients:= fg;

loop

[[[ready]]] := select([[[fsigtermfd, snap fdg + domain clients]]]);

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
quit gracefully;

end if;

for client= clients(pumpfd) jjj pump fd in readyloop
done client (pump fd);

end loop;

377



WEBeye Source Code A.41 vc-snap.setl

if snap fd in readythen
fd := accept(snap fd);
if fd 6= om then
name:= getnamefd;
pump fd := pump();
if pump fd = �1 then
-- child
[[[uri, protocol,mime headers]]] := get request( fd);
mu:= massageuri uri ?fg;
-- We ignore all details of the GET or POST request.
image fd := fileno obtain service(‘ image’);
printa (image fd, ‘JPEG’);
reada (image fd, n);
image:= getn (image fd, n);
assert#image= n;
printa ( fd, ‘HTTP/// 1.0 200 OK’);
printa ( fd, ‘Server: WEBeye’);
printa ( fd, ‘Content--type: image/// jpeg’);
printa ( fd, ‘Content--length: ’+str n);
printa ( fd, ‘Pragma: no--cache’);
printa ( fd, ‘Expires: 0’);
printa ( fd, ‘’ );
putc ( fd, image);
stop;

end if;
close( fd); -- child hangs onto this
client := fg;
client.name:= name;
clients(pumpfd) := client;

end if;
end if;

end loop;

proc done client (pump fd);
close(pump fd);
clients(pump fd) := om;

378



WEBeye Source Code A.41 vc-snap.setl

end proc done client;

proc quit gracefully;
exit gracefully([[[[[[‘pump for client ’ + client.name, pump fd]]] :

client= clients(pump fd)]]]);
end proc;

#include “vc--provide.setl”
#include “vc--obtain.setl”
#include “vc--getname.setl”
#include “vc--exit.setl”
#include “vc--msg.setl”
#include “webutil.setl”

379



WEBeye Source Code A.42 vc-toplev.setl

A.42 vc-toplev.setl

Services provided:
lookup
publish

Called by parent program:
vc-go.setl (Section A.18)

Calls child programs:
vc-camera.setl (Section A.4)
vc-do.setl (Section A.11)
vc-event.setl (Section A.12)
vc-evjump.setl (Section A.13)
vc-evzoom.setl (Section A.14)
vc-giver.setl (Section A.17)
vc-httpd.setl (Section A.19)
vc-image.setl (Section A.20)
vc-jumper.setl (Section A.25)
vc-mouse.setl (Section A.28)
vc-mover.setl (Section A.29)
vc-push.setl (Section A.34)
vc-snap.setl (Section A.41)
vc-zoomer.setl (Section A.43)

Textually #includes:
vc-admin.setl (Section A.1)
vc-allowed.setl (Section A.2)
vc-getname.setl (Section A.16)

Source code:

constyhwh= ‘vc--toplev.setl’;

-- This is the primordial program for the Box known as WEBeye.
-- It starts all the servers in the Box, catches their log output,
-- and, if necessary, shuts them down.
--
-- This version tries to bring server management up to a high
-- standard. It takes advantage of the consistent use of
-- obtain serviceandprovide service, and of the idiom by which
-- parents start pump and pipe co-processes, to figure out,

380



WEBeye Source Code A.42 vc-toplev.setl

-- based on the SETL source texts, which servers (together with
-- their substituent process trees) transitively depend on which
-- services, and thereby what order to start the servers in.
--
-- Note that a server can provide multiple services, a client can
-- obtain multiple services, and a child program can be instantiated
-- multiply. Thank goodness for SETL maps.
--
-- The file named inmy lock serves as a lock to make sure we have
-- only one instance of the Box running at one time on the local host.
--
-- The file named invc link is for the use of a Web server, and
-- points to (1) a static document saying we are in the process of
-- coming up, (2) a pseudo-document created dynamically after we have
-- fully come up and know our port number, (3) a static document saying
-- we are shutting down, or (4) a static document saying we are down.
--
-- So the external party, probably a CGI script, should simply try
-- to read the link file, and either use what it gets or report that
-- the Box has never been started. See for example ‘vc--master.cgi’,
-- from which ‘vc.cgi’ is instantiated.

conststub= ‘vc--toplev’; -- our “base name” for logging purposes

constmy lock = ‘vc--lock’; -- lock file (mutex)
constvc link = ‘vc--link.html’; -- link to one of these 4:
conststarting name= ‘vc--starting.html’;
construnning name= ‘vc--running.html’;
conststoppingname= ‘vc--stopping.html’;
constdown name = ‘vc--down.html’;
constmastername = ‘vc--up.html’; -- template forrunning namefile

constpid dir = ‘vc--pid’; -- directory for recording server process ids

var pub fd := om; -- miscellaneous file descriptors
var lookup fd := om; -- . . .
var health fd := om; -- . . .
var waiter fd := om; -- miscellaneous pseudo-fds

381



WEBeye Source Code A.42 vc-toplev.setl

var sigterm fd := om; -- . . .
var wait time;
var servicedb := fg; -- service name7! [host,port,pid]
var fd map:= fg; -- fd 7! server name
var src names;
var server map, client map;
var started:= [[[ ]]]; -- which servers have been started

commence; -- acquire mutex or exit abnormally right away

spew(stub+‘ <<<starting>>>’);

-- Point the link at the “just in the process of coming up” document:
redirect link (starting name);

setpgrp(); -- be a process group leader (seeterminate)

-- An external record of our pid for the likes ofvc-quit andvc-check:
putfile (pid dir+‘ /// ’+stub, str pid);

sigtermfd := open(‘SIGTERM’, ‘ signal’); -- catch TERM signals

--- This global dependency analysis phase is slow enough that it
--- should probably be moved to “configuration” time as something
--- to be re-done if any source file changes:

-- Raw names of the program sources:
src names:= fsrc namein split (filter (

“grep --l ’ const yhwh’ vc--���.setl”, “” ))
jjj src namenotin f‘’, yhwhgg;

server map:= scan(‘provide service’); -- service name7! server name

client map:= scan(‘obtain service’); -- service name7! client name

-- The use of ‘exec’ in front of our invocations of the SETL driver
-- is idiomatic—the shell (/bin/sh) is implicitly used to launch all
-- commands started byopen, filter , andsystem, and sometimes

382



WEBeye Source Code A.42 vc-toplev.setl

-- (depending on the shell implementation, but almost always if the
-- command has tricky things like I///O redirections in it, and always
-- if it consists of multiple process specifications) hangs around.
-- This interferes with our desire to send signals such as SIGTERM to
-- our SETL subprocesses, because the shell will not propagate these
-- without being told to. The easier solution is simply to have the
-- shell move out of the way as soon as it has parsed the command and
-- set up the I/// O redirections, and is ready to launch the SETL
-- subprocess (seeproc start in this very program for an example):
parent child map:= f[[[parent, child]]] : src namein src names,

line in split (filter (prep cmd(src name)+“ jjj ”+
“egrep ’ (constjjjopenjjjfilterjjjsystem).���exec setl .���\\\\\\ .setl’ ”, “” ),

‘ \\\ n’) jjj #line> 0
doing
src name(‘ \\\\\\ .setl$’) := ‘’;
parent:= src name;
line(1.. ‘setl ’) := ‘’;
line(‘ \\\\\\ .setl’ .. ) := ‘’;
child := line;

g;

-- Start core services and identify them with environment variables:
pub fd := core service(‘publish’, ‘ VC PUBLISH’); -- publication
lookup fd := core service(‘ lookup’, ‘ VC LOOKUP’); -- information

-- Start a warning timer to report services that fail to come up:
waiter fd := open(‘60000’, ‘ real--ms’);
wait time:= 0; -- minutes

-- Melt downserver mapandclient mapby removing entries from
-- them as services come up. Also record which servers have been
-- started, in order, so we can later shut them down in reverse order:

msg(‘starting servers...’);

while #servermap> 0 loop

383



WEBeye Source Code A.42 vc-toplev.setl

-- Which servers inserver mapcan now be started? The
-- prerequisite is that among the constituent programs of a server
-- (the server name’s transitive closure underparent child map),
-- there are none still inclient map, meaning no clients dependent
-- on services that are not yet up.

servers:= fserverin range server mapjjj servernotin startedand
forall pgmin transitive closure(parent child map, server)
jjj pgmnotin range client mapg;

start (servers);

-- Do like the main loop until a new service publishes itself:
old servicedb := servicedb;
while servicedb= old servicedb loop
main loop step;

end loop;
servicenames:= domain (servicedb� old servicedb);
assert#servicenames= 1; -- presume 1 at a time frommain loop step
servicename:= arb servicenames;

msg(‘service " ’+servicename+‘ " is up’);

-- Revise the maps, preparatory to re-evaluating the dependencies:
server map(servicename) := om;
client mapfservicenameg := fg;

end loop;

close(waiter fd); -- finished with the egg timer
waiter fd := om;

close(pub fd); -- unless you’d like to allow further publication
pub fd := om;

health fd := core service(‘health’, ‘ VC HEALTH’); -- sanity check

-- Instantiate the pseudo-document to be presented while we are running:
master:= getfilemastername;

384



WEBeye Source Code A.42 vc-toplev.setl

gsub(master, ‘LOOKUP’, getenv‘VC LOOKUP’); -- lookup service locus
putfile (running name, master); -- masteras after instantiation
if getfile running name6= masterthen
msg(‘ fatal -- problem creating file " ’+running name+‘ " ’);
terminate(1);

end if;
msg(‘created " ’+running name+‘ " ’);
-- Point the link at the “now running” pseudo-document. It’s not a
-- “real” document, because all it actually does is give the location
-- of our lookup service for a CGI script to pick up.
redirect link (running name);

spew(stub+‘ <<<ready>>>’);

loop -- until terminateis called
main loop step;

end loop;

-- Try to make link file point appropriately for our life-cycle phase
proc redirect link (target);
unlink (vc link);
clear error ;
link (target, vc link);
if last error = no error then
msg(str vc link+‘ now refers to ’+str target);

else
msg(‘problem pointing ’+str vc link+‘ at ’+str target+‘ -- ’+

last error );
end if;

end proc;

-- “Pre-process” some SETL source
proc prep cmd(src name);
-- First check for an early TERMinate request
[[[ready]]] := select([[[fsigtermfdg]]], 0);
if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);

385



WEBeye Source Code A.42 vc-toplev.setl

terminate(0);
end if;
return “setl --c ”+src name+“ jjj ” +

“awk ’ /// ˆ %SOURCE/// ,/// ˆ %CODE/// ’ jjj ” +
“sed --e ’ s/// ----.���$////// ’ ”;

end proc;

-- Obtain a service name7! program name (sans ‘.setl’ suffix) map
proc scan(what);
return f[[[servicename, src name]]] : src namein src names,

line in split (filter (prep cmd(src name) +
“ jjj grep ”+what+“ jjj grep --v proc”, “” ), ‘ \\\ n’) jjj #line> 0

doing
servicename:= unstr line(“’ ” .. “’ ”);
src name(‘ .setl$’) := ‘’;

g;
end proc;

-- Start a core service and make its location visible to child
-- processes through an environment variable
proc core service(serv name, envt var);
var serv fd, serv host, serv port, serv pid, serv loc; -- locals
serv fd := open(‘0’, ‘ server--socket’); -- listen on arbitrary port
serv host:= ‘ localhost’;
serv port := port serv fd;
serv pid := pid;
-- Include also aservicedbentry for this core service:
servicedb(serv name) := [[[serv host, serv port, serv pid]]];
serv loc := serv host+ ‘ :’ + str serv port;
-- Make the core service visible:
setenv(envt var, serv loc);
-- This record can be used by parties external to the Box:
putfile (‘vc--tcp/// ’+serv name, serv loc);
return serv fd;

end proc;

proc start (servers);

386



WEBeye Source Code A.42 vc-toplev.setl

for serverin serversloop
-- Set up the command so that the shell will redirect the server’s
-- stderr into itsstdout stream. Then when we use ‘pipe--in’
-- mode to start the server, we’ll be able to pick up all the
-- debugging and diagnostic output that it and its children spew
-- onstderr, even though any such child may havestdout
-- redirected for communication with its parent:
cmd:= ‘exec setl ’+server+‘ .setl 2>>>&1’;
fd := open(cmd, ‘pipe--in’);
if fd 6= om then

fd map( fd) := server;
spew(server+‘ <<<started>>>’);
putfile (pid dir+‘ /// ’+server, str pid( fd)); -- record process id
started(1.. 0) := [[[server]]]; -- insertserverat front of list

else
msg(‘ fatal -- cannot open pump " ’+cmd+‘ " ’);
terminate(1);
stop1; -- in caseterminatemistakenly returns

end if;
end loop;

end proc;

proc main loop step;

[[[ready]]] := select([[[fpub fd, lookup fd, health fd,
sigterm fd, waiter fdg + domain fd map]]]);

if pub fd 6= om andpub fd in readythen
fd := accept(pub fd);
if fd 6= om then
if allowed( fd) then
reada ( fd, servicename, serviceinfo);
servicedb(servicename) := serviceinfo;

else
msg(getnamefd+‘ is trying to provide a service???’);

end if;
close( fd);

387



WEBeye Source Code A.42 vc-toplev.setl

end if;
end if;

if lookup fd in readythen
fd := accept(lookup fd);
if fd 6= om then
if allowed( fd) then
-- Local clients are expected to make at most a few rapid
-- lookup requests and then immediately close the connection.
loop doing
reada ( fd, servicename);

while not eof do
printa ( fd, servicedb(servicename) ? [[[ ]]]);

end loop;
else
msg(‘ refusing lookup service to ’+getnamefd);

end if;
close( fd);

end if;
end if;

if health fd in readythen
fd := accept(health fd);
if fd 6= om then
if allowed( fd) then
-- Placeholder for any global checks we want this program to do
printa ( fd, ‘ok’); -- faith in self-health

else
msg(‘ refusing health--check service to ’+getnamefd);

end if;
close( fd);

end if;
end if;

if waiter fd 6= om and waiter fd in readythen
reada (waiter fd);
wait time+:= 1;
msg(‘services ’+str domain server map+‘ not started after ’+

388



WEBeye Source Code A.42 vc-toplev.setl

str wait time+‘ minute(s) -- still waiting’);
end if;

if sigterm fd in readythen
msg(yhwh+ ‘ (’ + str pid + ‘ ) caught SIGTERM’);
terminate(0);

end if;

for fd in readyjjj (server:= fd map( fd)) 6= om loop
if (s := getline fd) 6= om then
spew(server+‘ : ’+s);

else
msg(server+‘ exited! -- shutting down Box...’);
terminate(1);
-- The following code is not executed (terminatedoes not
-- return), but this is what should happen if there comes to be
-- some valid reason for individual servers to terminate:
close( fd);
spew(server+‘ <<<done>>>’);
fd map( fd) := om;

end if;
end loop;

end proc main loop step;

proc terminate(rc);

spew(stub+‘ <<<stopping>>>’);

-- Point at the “just in the process of shutting down” document:
redirect link (stoppingname);
-- Get rid of the dynamically created pseudo-document. If other
-- processes happen to be reading it, it won’t actually disappear
-- until they all close it:
system(‘ rm --f ’+running name);
msg(‘ removed " ’+running name+‘ " ’);

389



WEBeye Source Code A.42 vc-toplev.setl

if health fd 6= om then
close(health fd);
health fd := om;

end if;

if lookup fd 6= om then
close(lookup fd);
lookup fd := om;

end if;

if pub fd 6= om then
close(pub fd);
pub fd := om;

end if;

inv fd map:= f[[[server, fd]]] : server= fd map( fd)g;

-- Try the polite signal first, to give servers a chance to clean up:
for serverin startedloop

fd := inv fd map(server);
msg(‘sending TERM signal to ’+server+‘ (pid ’+str pid ( fd)+‘ )’);
kill (pid ( fd));

end loop;

-- Wait for all the servers to go down. Assume progress is being
-- made as long as no more than 1.618 seconds of silence goes by:
while #fd map> 0 loop

[[[ready]]] := select([[[domain fd map]]], 1618);

if #ready= 0 then
-- Timeout. Resort to the impolite signal for remaining servers:
msg(str range fd map+‘ did not exit -- killing...’);
for server= fd map( fd) loop
kill (pid( fd), ‘KILL’);
close( fd);
spew(server+‘ <<<killed>>>’);
fd map( fd) := om;

390



WEBeye Source Code A.42 vc-toplev.setl

end loop;

else
-- Response from server. It might be telling us something we
-- should log before it goes down, or EOF to say it has exited:
for fd in readyloop
server:= fd map( fd);
if (s := getline fd) 6= om then
spew(server+‘ : ’+s);

else
close( fd);
spew(server+‘ <<<done>>>’);
fd map( fd) := om;

end if;
end loop;

end if;

end loop;

-- Lest some servers abandoned their children, make sure all the
-- processes in the Box receive a TERM signal and then a KILL.
-- This is predicated on the assumption that all the processes in
-- the Box are in our process group. To avoid killing ourself,
-- we do the signalling from a special child that puts itself in
-- its own process group:
if fork () = 0 then
-- Special child process
box pgrp := getpgrp();
setpgrp(); -- escape the Box’s process group
kill (�box pgrp); -- send TERM to all processes in the Box’s group
select(om, 618); -- wait 0.618 sec (should be plenty)
kill (�box pgrp, ‘KILL’); -- kill them if nothing else did it
-- Point at the “now down” document:
redirect link (down name);
spew(stub+‘ <<<done>>>’);
finis (rc);

end if;

391



WEBeye Source Code A.42 vc-toplev.setl

-- It is not an error for the parent to reach here, nor is it an
-- error for it not to. It just depends on whether the special
-- child above gets to us first or not—a race where we don’t
-- care who wins...

--- I’m not really quite comfortable with that. It might be better
--- to spawn the child which starts its own process group right near
--- the beginning, and have it start the tree. Then the parent should
--- wait for that child to exit, and finally do the group-signalling
--- and THEN the lock release.
stop rc;

end proc terminate;

proc transitive closure( f, x);
-- adapted from SDDS 1986, page 334
to process:= seenalready:= fxg;
return fy : doing

y from to process;
to process+:= f fyg � seenalready;
seenalready+:= f fyg;

until #to process= 0g;
end proc;

#include “vc--getname.setl”
#include “vc--allowed.setl”
#include “vc--admin.setl”

392



WEBeye Source Code A.43 vc-zoomer.setl

A.43 vc-zoomer.setl

Service provided:
zoomer

Client of service:
do (vc-do.setl, Section A.11)

Called by parent program:
vc-toplev.setl (Section A.42)

Textually #includes:
vc-simpler.setl (Section A.40)

Source code:

constyhwh= ‘vc--zoomer.setl’;

-- Simplified “Zoom To” command interface.

-- The client just sends a number (the zoom factor) on each line.

-- The name of the service we provide:
#defineservicename‘zoomer’

-- The number of parameters on the command:
#definen parms 1

-- The full details of the command we will send to thedo service:
#definebuild cmd \\\
cmd:= fg; \\\
cmd.name:= ‘Zoom’; \\\
cmd.subcmd:= ‘To’; \\\
cmd.zoomfactor := val t(1);

#include ”vc-simpler.setl”

393



WEBeye Source Code A.44 webutil.setl

A.44 webutil.setl

Textually #included by:
vc-httpd.setl (Section A.19)
vc-push.setl (Section A.34)
vc-snap.setl (Section A.41)

Source code:

-- Read and parse a GET or POST command into a triple consisting of
-- a URI string, a protocol string (such as ‘HTTP/// 1.0’ or ‘ HTTP/// 1.1’),
-- and a MIME-header map:
--
proc get request( fd);
s := getline fd ? ‘’;
s(‘ˆ \\\ r’) := ‘’; s(‘ \\\ r$’) := ‘’; -- kill any \\\ n\\\r or \\\r \\\n effects
if #(t := split (s)) = 0 then return [[[ ]]]; end if;
[[[cmd, uri, protocol]]] := t;
if to upper cmdnotin f‘GET’, ‘ POST’g then return [[[ ]]]; end if;
uri ?:= ‘ /// ’;
protocol?:= ‘’;
mime headers:= fg;
if (to upper protocol)(‘ˆ HTTP’) 6= om then
-- Read more lines
k := 0;
loop doing
s := getline fd ? ‘’;
s(‘ˆ \\\ r’) := ‘’; s(‘ \\\ r$’) := ‘’; -- kill \\\n\\\ r or \\\r \\\n effects

while #split (s) > 0 do
h := break (s, ‘ :’);
if s(‘ˆ :’) 6= om then
s(‘ˆ :[ \\\ t]���’) := ‘’;
mimeheaderswith := [[[h, s]]];
if to lower h = ‘content--length’ and s(‘ˆ [0--9]’) 6= om then
k := val s(‘ˆ [0--9]���’);

end if;
end if;

end loop;
if k > 0 then

394



WEBeye Source Code A.44 webutil.setl

content:= getn ( fd, k) ? ‘’;
if #content6= k then
printa (stderr, myname, ‘:’,

‘expected’, k, ‘bytes of content but got’, #content);
end if;
uri +:= ‘?’ + content;

end if;
end if;
return [[[uri, protocol,mime headers]]];

end proc get request;

-- Parse a URI into a map, such that ‘/// ’, ‘ ?’, and ‘&’ are taken as
-- delimiters between map elements, and ‘.’ and ‘=’ are taken to
-- separate a key and associate within each map element.
--
-- The first delimited element is treated specially: its key is
-- taken to be ‘cmd’, and the whole element is the associate.
--
-- Also, any element consisting of a comma-separated pair of
-- unsigned integers is taken to be the associate of key ‘click’.
--
-- Otherwise, a missing associate is taken to be the null string.
--
-- In elements containing multiple separators, only the first is
-- recognized, and what remains is taken to be the associate.
--
op massageuri (uri);
if uri = om or uri = ‘’ or uri = ‘ /// ’ then
return fg; -- null map, no command or parameters

end if;
if not is string uri or uri(1) 6= ‘ /// ’ then
return om ; -- I simply cannot respect this as a URI

end if;
r := fg;
uri(1) := ‘’;
r.cmd:= sub (uri, ‘ˆ [̂ /// ?&]���’);
r +:= fgeneral pair unescapep : p in split (uri, ‘ [/// ?&]’)g;
return r;

395



WEBeye Source Code A.44 webutil.setl

end op;

op general pair (p);
if #p= 0 then return om; end if;
if p(‘ˆ [0--9]+,[0--9]+$’) 6= om then
return [[[‘click’, numericize p]]];

end if;
x := sub (p, ‘̂ [̂ =.]���’);
y := if #p> 0 then p(2.. ) else‘’ end;
return [[[x, numericize y]]];

end op;

op numericize(s);
if s(‘ˆ [--+]?[0--9]+$’) 6= om then
return val s;

elseifs(‘ˆ [--+]?[0--9]���[.][0--9]���$’) 6= om then
return val s;

elseif ‘ ,’ in s then
return [[[numericize x : x in split(s,‘ ,’)]]];

else
return s;

end if;
end op;

op escape(x); -- convert certain characters to %HH (hex)
return ‘’ += [[[if c in ‘˜‘ !@#$%ˆ &���()+=[]fg;:\\\ ’" <<<>>>?\\\\\\ jjj’ then ‘%’ + hex c

elsec end : c in x]]];
end op;

op escapemap ( f ); -- escape a SETL map for Web transmission
r := ‘’ += [[[‘&’ + x + ‘=’ + escapey : y = f (x)]]];
if #r > 0 then r(1) := ‘’; end if;
gsub(r, ‘ ’, ‘ +’);
return r;

end op;

op unescape(x); -- convert %HH hex escapes to normal chars
r := ‘’;

396



WEBeye Source Code A.44 webutil.setl

while #x> 2 loop
if x(1) = ‘%’ and x(2.. 3)(‘ [0--9a--fA--F][0--9a--fA--F]’) 6= om then
r +:= unhex x(2.. 3);
x(1.. 3) := ‘’;

else
r +:= len (x, 1);

end if;
end loop;
r +:= x;
return r;

end op;

op unescapemap (s); -- convert Web form-type spam to a SETL map
gsub(s, ‘ \\\\\\ +’, ‘ ’ ); -- change plusses to blanks
r := fpair unescapex : x in split (s, ‘ \\\\\\ &’)g; -- decode

end op;

op pair (x);
s := break (x, ‘=’); -- s := part ofx before ‘=’ or all of x; x := x(‘=’ .. ) or ‘’
return [[[s, if #x> 0 then x(2.. ) else‘’ end]]];

end op;

397



Bibliography

[1] Ada Core Technologies, Inc., 1998. Athttp://////www.gnat.com///. Home page for

the Ada 95 compilation system, GNAT.

[2] NYU Ada Project. Ada/Ed interpreter: Executable semantic model for Ada.

Technical report, Courant Institute of Mathematical Sciences, New York Uni-

versity, July 1984. Self-documenting listing of the NYU Ada/Ed Compiler, Ver-

sion 1.4, validated 28 June 1984.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley, 1986.

[4] D. Aliffi, D. Montanari, and E.G. Omodeo. Meta-interpreting SETL. InSED: A

SETL-Based Prototyping Environment[125], October 1988.

[5] F.E. Allen. Program optimization. In Mark I. Halpern and Christopher J. Shaw,

editors,Annual Review in Automatic Programming, volume 5, pages 239–307.

Pergamon Press, New York, 1969.

[6] Frances E. Allen. Control flow analysis.ACM SIGPLAN Notices, 5(7):1–19,

July 1970.

[7] Frances E. Allen. A basis for program optimization. InProc. IFIP Congress 71,

pages 385–390. North-Holland, 1972.

[8] Frances E. Allen. Interprocedural data flow analysis. InProc. IFIP Congress 74,

pages 398–402. North-Holland, 1974.

398



[9] Frances E. Allen. A method for determining program data relationships. In An-

drei Ershov and Valery A. Nepomniaschy, editors,Proc. International Sympo-

sium on Theoretical Programming, Novosibirsk, USSR, August 1972, volume 5

of Lecture Notes in Computer Science, pages 299–308. Springer-Verlag, 1974.

[10] Frances E. Allen and John Cocke. A catalogue of optimizing transformations. In

R. Rustin, editor,Design and Optimization of Compilers, pages 1–30. Prentice-

Hall, 1971.

[11] Frances E. Allen and John Cocke. Graph theoretic constructs for program control

flow analysis. Technical Report IBM Res. Rep. RC 3923, IBM T.J. Watson

Research Center, Yorktown Heights, NY, 1972.

[12] Frances E. Allen and John Cocke. A program data flow analysis procedure.

Communications of the ACM, 19(3):137–147, March 1976.

[13] David Bacon. Dave’s famous original SETL server, 1994. Athttp://////birch.eecs

.lehigh.edu///˜bacon///setl-server.html. Allows security-restricted SETL programs

to be edited or fetched and then run on a server host, from within a browser

environment.

[14] David Bacon. Dewar Online!, 1994. Athttp://////birch.eecs.lehigh.edu///cgi-bin///

html?dewar-online.html. A whimsical interface to thecomp.lang.ada newsgroup.

[15] David Bacon. The SETL home page, 1994. Athttp: //////birch.eecs.lehigh.edu///

˜bacon///. My home page has long claimed to be the home of SETL, and touted

SETL as the “world’s most wonderful programming language”.

[16] David Bacon. LabEye, 1997. Athttp://////birch.eecs.lehigh.edu:6565///. View of

an oscilloscope and a pair of bicolored LEDs that can be controlled through a

browser.

[17] David Bacon. LogEye, 1997. Athttp://////birch.eecs.lehigh.edu:8009///imp. Log-

map image of the view through a videocamera mounted on a spherical pointing

motor [26, 25].

399



[18] David Bacon. MUReye—a movable, zoomable web camera, 1999. Athttp: //////

128.180.98.223///cgi-bin///MUReye///. An instantiation of WEBeye (see Chapter 4

of this dissertation).

[19] David Bacon. SETL library documentation, 1999. Athttp://////birch.eecs.lehigh.edu

///˜bacon///setl-doc.html.

[20] David Bacon. Slim, 1999. Athttp://////birch.eecs.lehigh.edu///slim///. Starting point for

my adaptation of the documentation and distribution files comprising Herman

Venter’s Slim [204] language system, which he no longer maintains.

[21] Bernard Banner. Private communication, 1999.

[22] Nancy Baxter, Ed Dubinsky, and Gary Levin.Learning Discrete Mathematics

with ISETL. Springer-Verlag, 1989.

[23] Nancy Hood Baxter. Understanding how students acquire concepts underlying

sets. In James J. Kaput and Ed Dubinsky, editors,Research Issues in Under-

graduate Mathematics Learning, number 33 in MAA Notes, pages 99–106. The

Mathematical Association of America, Washington, DC, 1994.

[24] David M. Beazley. SWIG (simplified wrapper and interface generator), 1999.

At http://////www.swig.org///.

[25] B.B. Bederson, R.S. Wallace, and E.L. Schwartz. A miniature pan-tilt actua-

tor: The spherical pointing motor.IEEE Journal of Robotics and Automation,

10(3):298–308, June 1994. Also published by the Courant Institute of Mathe-

matical Sciences at New York University as Computer Science Technical Report

No. 601-R264, April 1992.

[26] Benjamin B. Bederson, Richard S. Wallace, and Eric L. Schwartz. Spherical

pointing motor. United States Patent No. 5,204,573, April 1993.

[27] V.H. Bistiolas, C.T. Davarakis, and A. Tsakalidis. Using SETL language for

cartography applications based on computational geometry algorithms. InSED:

A SETL-Based Prototyping Environment[125], 1989.

400



[28] Bard Bloom and Robert Paige. Transformational design and implementation of

a new efficient solution to the ready simulation problem.Science of Computer

Programming, 24(3):189–220, 1995.

[29] C. Bouzas, J. Gazofalakis, P. Spizakis, V. Tampakas, and V. Tziantafillou. SETL-

MON: The SETL monitor and performance evaluator. InSED: A SETL-Based

Prototyping Environment[125], 1989.

[30] J. Cai, Ph. Facon, F. Henglein, R. Paige, and E. Schonberg. Type analysis and

data structure selection. In B. Moeller, editor,Constructing Programs from Spec-

ifications, pages 126–164. North-Holland, 1991.

[31] J. Cai, R. Paige, and R. Tarjan. More efficient bottom-up multi-pattern matching

in trees.Theoretical Computer Science, 106(1):21–60, November 1992.

[32] Jiazhen Cai and Robert Paige. Program derivation by fixed point computation.

Science of Computer Programming, 11(3):197–261, 1988/89.

[33] Jiazhen Cai and Robert Paige. Towards increased productivity of algorithm im-

plementation. In David Notkin, editor,Proc. First ACM SIGSOFT Symposium

on the Foundations of Software Engineering(SIGSOFT ’93), volume 18, num-

ber 5 ofSoftware Engineering Notes, pages 71–78. Association for Computing

Machinery Special Interest Group on Software Engineering, December 1993.

[34] Jiazhen Cai and Robert Paige. Using multiset discrimination to solve language

processing problems without hashing.Theoretical Computer Science, 145(1–

2):189–228, July 1995.

[35] Canon USA, Inc. VC-C3 communication camera, 1998. Athttp: //////www.usa.

canon.com///corpoffice///viscommeq///vcc3.html.

[36] Domenico Cantone and Alfredo Ferro. Techniques of computable set theory

with applications to proof verification.Communications on Pure and Applied

Mathematics, 48(9–10):901–945, September 1995.

401



[37] Domenico Cantone, Alfredo Ferro, and Eugenio Omodeo.Computable Set The-

ory. Clarendon Press, Oxford, 1989.

[38] Chia-Hsiang Chang and Robert Paige. From regular expressions to DFA’s using

compressed NFA’s.Theoretical Computer Science, 178(1–2):1–36, May 1997.

[39] Nigel Paul Chapman.Theory and Practice in the Construction of Efficient In-

terpreters. PhD thesis, University of Leeds, 1980.

[40] W.F. Clocksin and C.S. Mellish.Programming in Prolog. Springer-Verlag,

fourth edition, 1997.

[41] John Cocke. Global common subexpression elimination.ACM SIGPLAN No-

tices, 5(7):20–24, July 1970.

[42] John Cocke and Ken Kennedy. An algorithm for reduction of operator strength.

Communications of the ACM, 20(11):850–856, November 1977.

[43] John Cocke and Raymond E. Miller. Some analysis techniques for optimizing

computer programs. InProc. 2nd Hawaii International Conference on System

Sciences, pages 143–146, Honolulu, HI, January 1969.

[44] John Cocke and Jacob T. Schwartz.Programming Languages and their Com-

pilers. Courant Institute of Mathematical Sciences, New York University, April

1970.

[45] Daniel E. Cooke. An introduction to SequenceL: A language to experiment

with constructs for processing nonscalars.Software Practice and Experience,

26(11):1205–1246, November 1996.

[46] Daniel E. Cooke. SequenceL provides a different way to view programming.

Computer Languages, 24(1):1–32, 1998.

[47] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation of fix-

points. InProc. 4th ACM Symposium on Principles of Programming Languages,

pages 238–252, January 1977.

402



[48] Patrick Cousot and Radhia Cousot. Constructive versions of Tarski’s fixed point

theorems.Pacific Journal of Mathematics, 82(1):43–57, 1979.

[49] Mike Cowlishaw. The Rexx language, 1999. Athttp://////www2.hursley.ibm.com///

Rexx///.

[50] M. Davis and J. Schwartz. Metamathematical extensibility for theorem verifiers

and proof checkers.Comp. Math. Appl., 5:217–230, 1979.

[51] Thierry Despeyroux. Executable specification of static semantics. In G. Kahn,

D.B. MacQueen, and G. Plotkin, editors,Semantics of Data Types: Proc. In-

ternational Symposium, Sophia-Antipolis, France, June 1984, volume 173 of

Lecture Notes in Computer Science, pages 215–233. Springer-Verlag, 1984.

[52] Thierry Despeyroux. TYPOL: A formalism to implement natural semantics.

Technical Report 94, INRIA, 1988.

[53] R.B.K. Dewar.The SETL Programming Language. Courant Institute of Mathe-

matical Sciences, New York University, 1979. Also athttp://////birch.eecs.lehigh.

edu///˜bacon///setlprog.ps.gz.

[54] R.B.K. Dewar and A.P. McCann. MACRO SPITBOL—a SNOBOL4 compiler.

Software Practice and Experience, 7:95–113, 1977.

[55] Robert B.K. Dewar. Indirect threaded code.Communications of the ACM,

18(6):330–331, June 1975.

[56] Robert B.K. Dewar, Arthur Grand, Ssu-Cheng Liu, Jacob T. Schwartz, and Ed-

mond Schonberg. Programming by refinement, as exemplified by the SETL rep-

resentation sublanguage.ACM Transactions on Programming Languages and

Systems, 1(1):27–49, July 1979.

[57] Edsger W. Dijkstra. Notes on structured programming. InStructured Program-

ming, pages 1–82. Academic Press, 1972.

403



[58] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,

NJ, 1976.

[59] E.-E. Doberkat, E. Dubinsky, and J.T. Schwartz. Reusability of design for com-

plex programs: An experiment with the SETL optimizer. InProc. ITT Workshop

on Reusability of Software, pages 106–108, Providence, RI, 1983. ITT.

[60] E.-E. Doberkat and U. Gutenbeil. Prototyping and reusing software. In

L. Dusink and P. Hall, editors,Software Re-Use, Utrecht 1989, pages 77–86.

Springer-Verlag, 1991.

[61] E.-E. Doberkat, U. Gutenbeil, and W. Hasselbring. SETL/E—a prototyping sys-

tem based on sets. In W. Zorn, editor,Proc. TOOL90, pages 109–118. University

of Karlsruhe, November 1990.

[62] E.-E. Doberkat, W. Hasselbring, and C. Pahl. Investigating strategies for co-

operative planning of independent agents through prototype evaluation. In

Paolo Ciancarini and Chris Hankin, editors,Coordination Languages and Mod-

els: Proc. First International Conference, COORDINATION ’96, Cesena, Italy,

April 1996, volume 1061 ofLecture Notes in Computer Science, pages 416–

419. Springer-Verlag, 1996. A longer version was published as University of

Dortmund Software-Technik Memo Nr. 86, December 1995, available atftp: //////

ls10-www.cs.uni-dortmund.de///pub///Technische-Berichte///Doberkat-Hasselbring-

Pahl-Memo-86.ps.gz.

[63] E.-E. Doberkat and Kio C. Hyun. Inline expansion of SETL procedures.ACM

SIGPLAN Notices, 20(12):77–87, 1985.

[64] E.-E. Doberkat and H.-G. Sobottka. A set-oriented program description lan-

guage for Ada. In R. Prieto-Diaz, W. Sch¨afer, J. Cramer, and S. Wolf, editors,

Proc. First International Workshop on Software Reusability, pages 193–196,

July 1991.

404



[65] Ernst E. Doberkat. Efficient translation of SETL programs. InProc. 18th Hawaii

International Conference on System Sciences, volume II, pages 457–465, Jan-

uary 1985.

[66] Ernst-Erich Doberkat. A proposal for integrating persistence into the prototyping

language SETL/E. Technischer Bericht (technical report) 02-90, University of

Essen Computer Science / Software Engineering, April 1990.

[67] Ernst-Erich Doberkat. Integrating persistence into a set-oriented prototyping

language.Structured Programming, 13(3):137–153, 1992.

[68] Ernst-Erich Doberkat and Dietmar Fox.Software-Prototyping mit SETL.

Teubner-Verlag, Stuttgart, 1989.

[69] Ernst-Erich Doberkat, Dietmar Fox, and Ulrich Gutenbeil. Translating SETL

into Ada, and creating libraries of data structures. InSED: A SETL-Based Pro-

totyping Environment[125], 1989.

[70] Ernst-Erich Doberkat, Wolfgang Franke, Ulrich Gutenbeil, Wilhelm Hassel-

bring, Ulrich Lammers, and Claus Pahl. ProSet—prototyping with sets: Lan-

guage definition. Technischer Bericht (technical report) 02-92, University of

Essen Computer Science / Software Engineering, April 1992. Also atftp: //////

ls10-www.cs.uni-dortmund.de///pub///Technische-Berichte///Essener-Berichte///02-

92.ps.gz.

[71] Ernst-Erich Doberkat, Wolfgang Franke, Ulrich Gutenbeil, Wilhelm Hassel-

bring, Ulrich Lammers, and Claus Pahl. ProSet—a language for prototyping

with sets. In Nick Kanopoulos, editor,Proc. 3rd International Workshop on

Rapid System Prototyping, pages 235–248. IEEE Computer Society Press, Re-

search Triangle Park, NC, June 1992.

[72] Ernst-Erich Doberkat and Ulrich Gutenbeil. SETL to Ada—tree transforma-

tions applied.Information and Software Technology, 29(10):548–557, Decem-

ber 1987.

405



[73] V. Donzeau-Gouge, C. Dubois, P. Facon, and F. Jean. Development of a pro-

gramming environment for SETL. In H.K. Nichols and D. Simpson, editors,

ESEC ’87: Proc. 1st European Software Engineering Conference, Strasbourg,

France, September 1987, volume 289 ofLecture Notes in Computer Science,

pages 21–32. Springer-Verlag, 1987.

[74] V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang. Programming environ-

ments based on structured editors: The MENTOR experience. In D.R. Barstow,

H.E. Shrobe, and E. Sandewall, editors,Interactive Programming Environments,

pages 128–140. McGraw-Hill, 1984.

[75] J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures

persistent.Journal of Computer and System Sciences, 38:86–124, 1989.

[76] E. Dubinsky. ISETL: A programming language for learning mathematics.Com-

munications on Pure and Applied Mathematics, 48(9–10):1027–1051, Septem-

ber 1995. Presented at NYU on the occasion of Jack Schwartz’s 65th birthday.

[77] Ed Dubinsky, Stefan Freudenberger, Edith Schonberg, and J.T. Schwartz.

Reusability of design for large software systems: An experiment with the SETL

optimizer. In Ted J. Biggerstaff and Alan J. Perlis, editors,Software Reusability,

Volume I: Concepts and Models, pages 275–293. ACM Press, New York, 1989.

[78] Ed Dubinsky and Guershon Harel. The nature of the process conception of

function. In Harel and Dubinsky [100], pages 85–106.

[79] Ed Dubinsky and Uri Leron.Learning Abstract Algebra with ISETL. Springer-

Verlag, 1994.

[80] J. Earley. High level iterators and a method of data structure choice.Computer

Languages, 1(4):321–342, 1975.

[81] William E. Fenton and Ed Dubinsky.Introduction to Discrete Mathematics with

ISETL. Springer-Verlag, 1996.

406



[82] Amelia C. Fong. Generalized common subexpressions in very high level lan-

guages. InProc. 4th ACM Symposium on Principles of Programming Lan-

guages, pages 48–57, January 1977.

[83] Amelia C. Fong. Inductively computable constructs in very high level languages.

In Proc. 6th ACM Symposium on Principles of Programming Languages, pages

21–28, January 1979.

[84] Amelia C. Fong, John B. Kam, and Jeffrey D. Ullman. Application of lattice

algebra to loop optimization. InProc. 2nd ACM Symposium on Principles of

Programming Languages, pages 1–9, January 1975.

[85] Amelia C. Fong and Jeffrey D. Ullman. Induction variables in very high level

languages. InProc. 3rd ACM Symposium on Principles of Programming Lan-

guages, pages 104–112, January 1976.

[86] Amelia C. Fong and Jeffrey D. Ullman. Finding the depth of a flow graph.

Comput. Syst. Sci., 15:300–309, 1977.

[87] Free Software Foundation. GNU’s not Unix!—the GNU project and the Free

Software Foundation (FSF), 1999. Athttp://////www.gnu.org///.

[88] Stefan M. Freudenberger, Jacob T. Schwartz, and Micha Sharir. Experience

with the SETL optimizer.ACM Transactions on Programming Languages and

Systems, 5(1):26–45, January 1983.

[89] Matthew Fuchs. Escaping the event loop: An alternative control structure for

multi-threaded GUIs. In C. Unger and L.J. Bass, editors,Engineering for HCI.

Chapman & Hall, 1996. FromEngineering the Human Computer Interface

(EHCI ’95), and available viahttp://////www.cs.nyu.edu///phd students///fuchs///.

[90] David Gelernter. Generative communication in Linda.ACM Transactions on

Programming Languages and Systems, 7(1):80–112, January 1985.

[91] Deepak Goyal. An improved intra-procedural may-alias analysis algorithm.

Technical Report 777, Courant Institute of Mathematical Sciences, New York

407



University, February 1999. Also athttp://////cs1.cs.nyu.edu///phd students///deepak///

publications///improvement.ps.

[92] Deepak Goyal.A Language Theoretic Approach To Algorithms. PhD thesis,

New York University, January 2000.

[93] Deepak Goyal and Robert Paige. The formal reconstruction and improvement of

the linear time fragment of Willard’s relational calculus subset. In R. Bird and

L. Meertens, editors,IFIP TC2 Working Conference 1997, Algorithmic Lan-

guages and Calculi, pages 382–414. Chapman and Hall, 1997.

[94] Deepak Goyal and Robert Paige. A new solution to the hidden copy problem.

In Giorgio Levi, editor,Static Analysis: Proc. 5th International Symposium,

SAS ’98, Pisa, Italy, September 1998, volume 1503 ofLecture Notes in Com-

puter Science, pages 327–348. Springer-Verlag, 1998.

[95] NYU Griffin Project. The Griffin programming language, 1996. Atftp://////cs.nyu.

edu///pub///griffin///.

[96] Ralph E. Griswold and Madge T. Griswold.The Implementation of the Icon

Programming Language. Princeton University Press, 1986.

[97] Ralph E. Griswold and Madge T. Griswold.The Icon Programming Language.

Peer-to-Peer Communications, third edition, 1996.

[98] Ralph E. Griswold, Clinton L. Jeffery, and Gregg M. Townsend.Graphics Pro-

gramming in Icon. Peer-to-Peer Communications, 1998.

[99] R.E. Griswold, J.F. Poage, and I.P. Polonsky.The SNOBOL4 Programming Lan-

guage. Prentice-Hall, Englewood Cliffs, NJ, second edition, 1971.

[100] Guershon Harel and Ed Dubinsky, editors.The Concept of Function: Aspects

of Epistemology and Pedagogy. Number 25 in MAA Notes. The Mathematical

Association of America, Washington, DC, 1992.

408



[101] M.C. Harrison. BALM-SETL: A simple implementation of SETL.SETL

Newsletters[186], No. 1, November 1970.

[102] W. Hasselbring. On integrating generative communication into the prototyping

language ProSet. Technischer Bericht (technical report) 05-91, University of

Essen Computer Science / Software Engineering, December 1991. Also atftp:

//////ls10-www.cs.uni-dortmund.de///pub///Technische-Berichte///Essener-Berichte///05-

91.ps.gz.

[103] W. Hasselbring. Translating a subset of SETL/E into SETL2. Technischer

Bericht (technical report) 02-91, University of Essen Computer Science / Soft-

ware Engineering, January 1991.

[104] W. Hasselbring. A formal Z specification of ProSet-Linda. Technischer Bericht

(technical report) 04-92, University of Essen Computer Science / Software En-

gineering, September 1992. Also atftp: ////// ls10-www.cs.uni-dortmund.de///pub///

Technische-Berichte///Essener-Berichte///04-92.ps.gz.

[105] W. Hasselbring. Animation of Object-Z specifications with a set-oriented

prototyping language. In J.P. Bowen and J.A. Hall, editors,Z User Work-

shop: Proc. 8th Z User Meeting, Cambridge, UK, Workshops in Computing,

pages 337–356. Springer-Verlag, June 1994. Also published as University of

Dortmund Software Technology UniDO Forschungsbericht (research report)

523/1994, available atftp: ////// ls10-www.cs.uni-dortmund.de /// pub /// Technische-

Berichte///Hasselbring-UniDo-523-1994.ps.gz.

[106] W. Hasselbring and R.B. Fisher. Investigating parallel interpretation-tree model

matching algorithms with ProSet-Linda. Software-Technik Memo 77, Univer-

sity of Dortmund, December 1994. Also atftp://////ls10-www.cs.uni-dortmund.de///

pub///Technische-Berichte///Hasselbring-Fisher SWT-Memo-77.ps.gz.

[107] W. Hasselbring and R.B. Fisher. Using the ProSet-Linda prototyping language

for investigating MIMD algorithms for model matching in 3-D computer vision.

In Afonso Ferreira and Jos´e Rolim, editors,Parallel Algorithms for Irregularly

409



Structured Problems: Proc. Second International Workshop, IRREGULAR ’95,

Lyon, France, September 1995, volume 980 ofLecture Notes in Computer Sci-

ence, pages 301–315. Springer-Verlag, 1995. Also published as University

of Dortmund Software Technology UniDO Forschungsbericht (research report)

579/1995, available atftp: ////// ls10-www.cs.uni-dortmund.de /// pub /// Technische-

Berichte///Hasselbring-Fisher-Irregular95.ps.gz.

[108] W. Hasselbring, P. Jodeleit, and M. Kirsch. Implementing parallel algorithms

based on prototype evaluation and transformation. Software-Technik Memo 93,

University of Dortmund, January 1997. Also atftp://////ls10-www.cs.uni-dortmund.

de///pub///Technische-Berichte///Hasselbring-Jodeleit-Kirsch SWT-Memo-93.ps.gz.

[109] Wilhelm Hasselbring. Prototyping parallel algorithms with ProSet-Linda. In

Jens Volkert, editor,Parallel Computation: Proc. Second International ACPC

Conference, Gmunden, Austria, October 1993, volume 734 ofLecture Notes

in Computer Science, pages 135–150. Springer-Verlag, 1993. Also published

as University of Essen Computer Science / Software Engineering Technischer

Bericht (technical report) 04-93, 1993, available atftp: ////// ls10-www .cs .uni-

dortmund.de///pub///Technische-Berichte///Essener-Berichte///04-93.ps.gz.

[110] Wilhelm Hasselbring. Approaches to high-level programming and prototyp-

ing of concurrent applications. Software-Technik Memo 91, University of

Dortmund, January 1997. Also atftp: ////// ls10-www.cs.uni-dortmund.de /// pub ///

Technische-Berichte///Hasselbring SWT-Memo-91.ps.gz.

[111] Wilhelm Hasselbring. The ProSet-Linda approach to prototyping parallel sys-

tems. Journal of Systems and Software, 43(3):187–196, November 1998. Also

published as University of Dortmund Software Technology UniDO Forschungs-

bericht (research report) 650/1997, available atftp://////ls10-www.cs.uni-dortmund.

de///pub///Technische-Berichte///Hasselbring-UniDo-650-1997.ps.gz.

[112] Wilhelm Hasselbring and Andreas Kr¨ober. Combining OMT with a proto-

typing approach. Journal of Systems and Software, 43(3):177–185, Novem-

ber 1998. Also published as University of Dortmund Software Technology

410



UniDO Forschungsbericht (research report) 651/1997, available atftp: ////// ls10-

www.cs.uni-dortmund.de///pub///Technische-Berichte///Hasselbring-Kroeber-UniDo-

651-1997.ps.gz.

[113] C.A.R. Hoare. An axiomatic basis for computer programming.Communications

of the ACM, 12(10):576–580, 1969.

[114] C.A.R. Hoare. Data reliability. InProc. of the International Conference on

Reliable Software, pages 528–533, 1975. IEEE Cat. No. 75CH0940-7CSR.

[115] Jim Hugunin. JPython home, 1999. Athttp://////www.jpython.org///.

[116] IANA. Internet Assigned Numbers Authority, 1998. Athttp://////www.iana.org///.

[117] IEEE. IEEE Standard for Information Technology—Portable Operating System

Interface (POSIX)—Part 2: Shell and Utilities, Volumes 1–2. Institute of Electri-

cal and Electronics Engineers, 1993. IEEE/ANSI Std 1003.2-1992 & 1003.2a-

1992, or ISO/IEC 9945-2.

[118] IEEE. IEEE Standard for Information Technology—Portable Operating Sys-

tem Interface (POSIX)—Part 1: System Application Program Interface (API) [C

Language]. Institute of Electrical and Electronics Engineers, 1996. IEEE/ANSI

Std 1003.1, or ISO/IEC 9945-1.

[119] IEEE. IEEE Standard for Information Technology—Portable Operating System

Interface (POSIX)—Protocol Independent Interfaces (PII). Institute of Electrical

and Electronics Engineers, March 1998. P1003.1g, D6.6 (draft standard).

[120] K.E. Iverson.A Programming Language. John Wiley, New York, 1962.

[121] Eric F. Johnson and Kevin Reichard.Advanced X Window Applications Pro-

gramming. M&T Books, New York, second edition, 1994.

[122] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.Partial Evaluation and

Automatic Program Generation. Prentice-Hall International (UK), 1993.

411



[123] Marc A. Kaplan and Jeffrey D. Ullman. A general scheme for the automatic

inference of variable types. InProc. 5th ACM Symposium on Principles of Pro-

gramming Languages, pages 60–75, 1978.

[124] J. Keller.Cantor: A Tutorial and a User’s Guide. Education Report 94/9. Kepler,

Paris, 1994.

[125] J.P. Keller. SED: A SETL-based prototyping environment. Final report of the

SED project, ESPRIT, February 1989.

[126] J.P. Keller and R. Paige. Program derivation with verified transformations—a

case study.Communications on Pure and Applied Mathematics, 48(9–10):1053–

1113, September 1995.

[127] Yo Keller.An Introduction to Cantor Version 0.41. Kepler, Paris, February 1991.

[128] Richard Kelsey, William Clinger, and editors Jonathan Rees. Revised(5) report

on the algorithmic language Scheme, 1998. Underhttp://////www-swiss.ai.mit.edu///

˜jaffer///Scheme.html.

[129] Kempe Software Capital Enterprises. Ada and the Web and Java, 1998. At

http://////www.adahome.com///Resources///Ada Java.html.

[130] Ken Kennedy. A global flow analysis algorithm.International Journal of Com-

puter Mathematics, 3:5–15, December 1971.

[131] Ken Kennedy. Node listings applied to data flow analysis. InProc. 2nd ACM

Symposium on Principles of Programming Languages, pages 10–21, January

1975.

[132] Ken Kennedy. A comparison of two algorithms for global data flow analysis.

SIAM J. Comput., 5(1):158–180, March 1976.

[133] Brian W. Kernighan and Rob Pike.The Practice of Programming. Addison-

Wesley, 1999.

412



[134] Khoral Research Inc. Khoros, 1999. Athttp://////www.khoral.com///.

[135] Philippe Kruchten, Edmond Schonberg, and Jacob Schwartz. Software proto-

typing using the SETL programming language.IEEE Software, 1(4):66–75,

October 1984.

[136] Doug Lea.Concurrent Programming in Java: Design Principles and Patterns.

Addison-Wesley, 1997.

[137] C.H. Lindsey and S.G. van der Meulen.Informal Introduction to Algol 68.

North-Holland, 1977.

[138] Zhiqing Liu.Lazy SETL Debugging with Persistent Data Structures. PhD thesis,

New York University, November 1994.

[139] Zhiqing Liu. A persistent runtime system using persistent data structures. In

ACM Symposium on Applied Computing, pages 429–436, February 1996.

[140] Zhiqing Liu. A system for visualizing and animating program runtime histories.

In IEEE Symposium on Visual Languages, pages 46–53. IEEE Computer Society

Press, September 1996.

[141] Zhiqing Liu. An advanced C++ library for symbolic computing. Technical

Report TR-CIS-0299-11, Purdue University, Indianapolis, IN, February 1999.

[142] J.W. Lloyd. Programming in an integrated functional and logic language.Jour-

nal of Functional and Logic Programming, 1999(3), March 1999. Underhttp://////

cs.tu-berlin.de///journal///jflp///articles///1999///A99-03///A99-03.html.

[143] James Low and Paul Rovner. Techniques for the automatic selection of data

structures. InProc. 3rd ACM Symposium on Principles of Programming Lan-

guages, pages 58–67, January 1976.

[144] James R. Low.Automatic Coding: Choice of Data Structures, volume 16 of

Interdisciplinary Systems Research. Birkhäuser Verlag, Basel, 1976.

413



[145] David Mathews. ISETL distribution page, 1997. Athttp://////www.math.purdue.edu

///˜ccc///distribution.html.

[146] R. Milner, M. Tofte, and R. Harper.The Definition of Standard ML. MIT Press,

1990.

[147] Thomas Minka. PLE lecture notes—Python, 1997. Athttp://////vismod.www.media

.mit.edu///˜tpminka///PLE///python///python.html.

[148] E. Morel and C. Renvoise. Global optimization by suppression of partial redun-

dancies.Communications of the ACM, 22(2):96–103, February 1979.

[149] Steven S. Muchnick and Neil D. Jones.Program Flow Analysis: Theory and

Applications. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[150] Donald L. Muench. ISETL—interactive set language.Notices of the American

Mathematical Society, 37(3):276–279, March 1990. Review of the software

package ISETL 2.0.

[151] Henry Mullish and Max Goldstein.A SETLB Primer. Courant Institute of Math-

ematical Sciences, New York University, 1973.

[152] Netscape Communications Corporation. Core JavaScript reference, 1999. At

http://////developer.netscape.com///docs///manuals///js///core///jsref///index.htm.

[153] Object Management Group. CORBA, 1999. Athttp://////www.omg.org///.

[154] The Open Group.The Single UNIX Specification, Version 2. The Open Group,

February 1997. Six-volume set, Document Number T912. Freely searchable

on-line athttp://////www.opengroup.org///publications///catalog///t912.htm.

[155] O’Reilly & Associates, 1999. Athttp://////www.perl.com///. Home page for Perl.

[156] John K. Ousterhout. Scripting: Higher level programming for the 21st century.

IEEE Computer, 31(3):23–30, March 1998. Also athttp://////www.scriptics.com///

people///john.ousterhout///scripting.html.

414



[157] R. Paige and J.T. Schwartz. Expression continuity and the formal differentiation

of algorithms. InProc. 4th ACM Symposium on Principles of Programming

Languages, pages 58–71, January 1977.

[158] Robert Paige. Programming with invariants.IEEE Software, 3(1):56–69, Jan-

uary 1986.

[159] Robert Paige. Real-time simulation of a set machine on a RAM. In R. Janicki and

W. Koczkodaj, editors,Proc. ICCI 89, volume II ofComputing and Information,

pages 69–73. Canadian Scholars’ Press, Toronto, May 1989.

[160] Robert Paige. Efficient translation of external input in a dynamically typed lan-

guage. In B. Pehrson and I. Simon, editors,Technology and Foundations: 13th

World Computer Congress 94, IFIP Transactions A-51, volume 1, pages 603–

608. North-Holland, September 1994.

[161] Robert Paige. Viewing a program transformation system at work. In Manuel

Hermenegildo and Jaan Penjam, editors,Programming Language Implementa-

tion and Logic Programming: Proc. 6th International Symposium, PLILP ’94,

Madrid, Spain, September 1994, volume 844 ofLecture Notes in Computer Sci-

ence, pages 5–24. Springer-Verlag, 1994. PLILP ’94 was a joint symposium

with the 4th International Conference on Algebraic and Logic Programming,

ALP ’94.

[162] Robert Paige. Future directions in program transformations.Computing Surveys,

28A(4), December 1996.

[163] Robert Paige and Fritz Henglein. Mechanical translation of set theoretic prob-

lem specifications into efficient RAM code—a case study.Journal of Symbolic

Computation, 4(2):207–232, August 1987.

[164] Robert Paige and Shaye Koenig. Finite differencing of computable expres-

sions. ACM Transactions on Programming Languages and Systems, 4(3):402–

454, July 1982.

415



[165] Robert Paige, Robert E. Tarjan, and Robert Bonic. A linear time solution to

the single function coarsest partition problem.Theoretical Computer Science,

40(1):67–84, September 1985.

[166] Robert Paige and Zhe Yang. High level reading and data structure compilation.

In Proc. 24th ACM Symposium on Principles of Programming Languages, pages

456–469, January 1997.

[167] Parallax, Inc. BASIC Stamps, 1997. Athttp://////www.parallaxinc.com///.

[168] Toto Paxia. A string matching native package for the SETL2 language, March

1999. Available through electronic mail upon request topaxia@cs.nyu.edu.

[169] Raymond P. Polivka and Sandra Pakin.APL: The Language and Its Usage.

Prentice-Hall, Englewood Cliffs, NJ, 1975.

[170] Enrico Pontelli. Programming with sets, 1999. Athttp: //////www.cs.nmsu.edu///

˜complog///sets///.

[171] G. Rossi and B. Jayaraman, editors.Workshop on Declarative Programming

with Sets, number 200 in Quaderni del Dipartimento di Matematica. Universit`a

di Parma, September 1999. Also athttp: ////// www.math.unipr. it /// ˜gianfr /// DPS ///

papers.html.

[172] Gianfranco Rossi. Programming with sets, 1998. Athttp://////prmat.math.unipr.it///

˜gianfr///sets///index.html.

[173] E. Schonberg and D. Shields. From prototype to efficient implementation: A

case study using SETL and C. Technical Report 170, Courant Institute of Math-

ematical Sciences, New York University, July 1985.

[174] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. An automatic tech-

nique for selection of data representations in SETL programs.ACM Transactions

on Programming Languages and Systems, 3(2):126–143, April 1981.

416



[175] J. Schwartz.Set Theory as a Language for Program Specification and Program-

ming. Courant Institute of Mathematical Sciences, New York University, 1970.

[176] J. Schwartz, S. Brown, and E. Schonberg. SETLA user’s manual. InOn Pro-

gramming: An Interim Report on the SETL Project[177], pages 90–159. OrigI-

nally appeared as SETL Newsletter No. 70 [186].

[177] Jacob T. Schwartz.On Programming: An Interim Report on the SETL Project.

Courant Institute of Mathematical Sciences, New York University, revised 1975.

[178] J.T. Schwartz. Automatic data structure choice in a language of very high level.

Communications of the ACM, 18(12):722–728, December 1975.

[179] J.T. Schwartz. Optimization of very high level languages—I: Value transmission

and its corollaries.Computer Languages, 1(2):161–194, 1975.

[180] J.T. Schwartz. Optimization of very high level languages—II: Deducing rela-

tionships of inclusion and membership.Computer Languages, 1(3):197–218,

1975.

[181] J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg.Programming

with Sets: An Introduction to SETL. Springer-Verlag, 1986.

[182] Randal L. Schwartz.Learning Perl. O’Reilly & Associates, 1993.

[183] Keith Schwingendorf, Julie Hawks, and Jennifer Beineke. Horizontal and verti-

cal growth of the student’s conception of function. In Harel and Dubinsky [100],

pages 133–149.

[184] Scriptics Corporation. Scriptics: Solutions for business integration, 1999. At

http://////www.scriptics.com///. Home page for Tcl/Tk.

[185] Robert W. Sebesta.Concepts of Programming Languages. Addison-Wesley,

fourth edition, 1999.

[186] NYU SETL Project. SETL Newsletters. Numbers 1–234, Courant Institute of

Mathematical Sciences, New York University, 1970–1981 and 1985–1989.

417



[187] David Shields. BALMSETL user’s guide (in brief).SETL Newsletters[186],

No. 20, March 1971.

[188] Josh Simon. Michigan Terminal System, 1999. Athttp://////www.clock.org///˜jss///

work///mts///.

[189] M. Sintzoff. Calculating properties of programs by valuations on specific mod-

els. ACM SIGPLAN Notices, 7(1):203–207, 1972.

[190] W. Kirk Snyder. The SETL2 programming language. Technical Report 490,

Courant Institute of Mathematical Sciences, New York University, January 1990.

Also at ftp://////cs.nyu.edu///pub///local///hummel///setl2///setl2.ps.Z.

[191] W. Kirk Snyder. The SETL2 programming language: Update on current devel-

opments. Technical report, Courant Institute of Mathematical Sciences, New

York University, September 1990. Also atftp://////cs.nyu.edu///pub///local///hummel///

setl2///update.ps.Z.

[192] Lindsey Spratt.Seeing the Logic of Programming With Sets. PhD thesis, Uni-

versity of Kansas, 1996. Also athttp://////www.designlab.ukans.edu///˜spratt///papers

///PhD Dissertation.dir///visual logic sets progra.html.

[193] Steven Pemberton. A short introduction to the ABC language, 1999. Athttp://////

www.cwi.nl///˜steven///abc///.

[194] W. Richard Stevens.UNIX Network Programming, volume 1. Prentice-Hall,

Upper Saddle River, NJ, second edition, 1998.

[195] A. Tarski. A lattice-theoretical fixpoint theorem and its application.Pacific

Journal of Mathematics, 5:285–309, 1955.

[196] Aaron M. Tenenbaum.Type Determination for Very High Level Languages. PhD

thesis, New York University, October 1974.

[197] S. Thompson.Haskell: The Craft of Functional Programming. Addison-Wesley,

1996. See alsohttp://////haskell.org///.

418



[198] United States Department of Defense.Reference Manual for the ADA Pro-

gramming Language, ANSI/MIL-STD-1815A-1983. Springer-Verlag, New York,

February 1983.

[199] Guido van Rossum. Python patterns - implementing graphs, 1998. Athttp: //////

www.python.org///doc///essays///graphs.html.

[200] Guido van Rossum. Comparing Python to other languages, 1999. Athttp: //////

www.python.org///doc///essays///comparisons.html.

[201] Guido van Rossum. Python language website, 1999. Athttp://////www.python.org///.

[202] Julius J. VandeKopple. Private communication, 1999.

[203] Julius J. VandeKopple. The SETLS programming language, revised 1994. At

ftp://////cs.nyu.edu///pub///languages///setls///.

[204] Herman Venter. The Slim programming language, 1999. Athttp://////birch.eecs.

lehigh.edu///slim///default.htm.

[205] Larry Wall, Tom Christiansen, and Randal L. Schwartz.Programming Perl.

O’Reilly & Associates, second edition, 1996.

[206] Richard Wallace. The A.L.I.C.E. nexus, 1999. Athttp://////www.alicebot.org///.

[207] H.S. Warren, Jr. SETL implementation and optimization: A first look at SETL

compilation—target code style. InOn Programming: An Interim Report on the

SETL Project[177], pages 54–68. Revision of SETL Newsletter No. 53 [186].

[208] Gerald Weiss. Recursive data types in SETL: Automatic determination, data lan-

guage description, and efficient implementation. Technical Report 201, Courant

Institute of Mathematical Sciences, New York University, October 1985.

[209] Gerald Weiss and Edmond Schonberg. Typefinding recursive structures: A data-

flow analysis in the presence of infinite type sets. Technical Report 235, Courant

Institute of Mathematical Sciences, New York University, August 1986.

419



[210] Chung Yung. Extending typed�-calculus to sets. InProc. MASPLAS ’97, April

1997. Also athttp://////cs1.cs.nyu.edu///phd students///yung///publications///slambda3.

ps.gz.

[211] Chung Yung. EAS: An experimental applicative language with sets. InProc.

MASPLAS ’98, March 1998. Also athttp://////cs1.cs.nyu.edu///phd students///yung///

publications///eas02.ps.gz.

[212] Chung Yung.Destructive Effect Analysis and Finite Differencing for Strict Func-

tional Languages. PhD thesis, New York University, August 1999.

420


